Бронза обозначение – Бронза — Википедия

Содержание

Маркировка бронз

 

Бронза — сплав меди с оловом, алюминием, кремнием, бериллием и другими элементами, за исключением цинка. В зависимости от легирования бронзы называют оловянными, алюминиевыми, кремневыми, бериллиевыми и т.д.

Марку бронз составляют из букв «Бр», характеризующих тип сплава (бронза), букв, указывающих перечень легирующих элементов в нисходящем порядке их содержания, и цифр, соответствующих их усредненному количеству в процентах. Например: маркой Бр. ОЦС4-4-2,5 обозначают бронзу, содержащую 4% олова, 4% цинка, 2.5% свинца и 89,5% меди (100-(4+4+2.5)=89,5% ).

Принято все бронзы делить на оловянные и безоловянные.

 

Оловянные бронзы.

 

Сплавы меди с оловом обладают высокой антикоррозионной стойкостью и хорошими антифрикционными свойствами. Этим обусловливается применение бронз в химической промышленности для изготовления литой арматуры, а также в качестве антифрикционного материала в других отраслях.

Оловянные бронзы легируют цинком, никелем и фосфором. Цинка добавляют до 10%, в этом количестве он почти не изменяет свойств бронз, но делает их дешевле. Свинец и фосфор улучшают антифрикционные свойства бронзы и ее обрабатываемость резанием.

Применение некоторых литейных оловянных бронз

 

Деформируемые бронзы:

 

БрОФ6,5-0,4 — пружины, барометрические коробки, мембраны, антифрикционные детали

БрОЦ4-3 — плоские и круглые пружины

БрОЦС4-4-2,5 — Антифрикционные детали

 

Литейные бронзы:

 

БрО3Ц12С5 — Арматура общего назначения

БрО5ЦНС5  — Антифрикционные детали, вкладыши подшипников и арматура

БрО4Ц4С17 — Антифрикционные детали (втулки, подшипники, вкладыши, червячные пары)

 

Бронзы безоловянные.

В настоящее время существует ряд марок бронз, не содержащих олова. Это двойные или чаще многокомпонентные сплавы меди с алюминием, марганцем, железом, свинцом, никелем, бериллием и кремнием.

Алюминиевые бронзы. Алюминиевые бронзы хорошо сопротивляются коррозии в морской воде и тропической атмосфере, имеют высокие механические и технологические свойства. Однофазные бронзы, обладающие высокой пластичностью, применяют для глубокой штамповки. Двухфазные бронзы подвергают горячей деформации, или применяют в виде фасонного литья.

Литейные свойства алюминиевых бронз ниже, чем литейные свойства оловянных бронз, но они обеспечивают высокую плотность отливок.

Кремнистые бронзы. При легировании меди кремнием (до 3,5%) повышается прочность, а так же пластичность. Никель и марганец улучшает механические и коррозионные свойства кремнистых бронз, эти бронзы легко обрабатываются давлением, резанием и свариваются. Благодаря высоким механическим свойствам, упругости и коррозионной стойкости их применяют для изготовления пружин и пружинящих деталей приборов и радиооборудования, работающих при температуре до 2500С, а также в агрессивных средах (пресная, морская вода).

Бериллиевые бронзы. Эти бронзы относятся к сплавам, упрочняемые термической обработкой. Обладая высокими значениями временного сопротивления, пределами текучести и упругости, бериллиевые бронзы хорошо сопротивляются коррозии, свариваются и обрабатываются резанием. Бериллиевые бронзы применяют для мембран, пружин, пружинящих контактов, деталей, работающих на износ, в электронной технике

Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоит из кристаллов меди и включения свинца. Такая структура бронзы обеспечивает высокие антифрикционные свойства. Это предопределяет широкое применение свинцовой бронзы для изготовления вкладышей подшипников скольжения, работающих с большими скоростями и при повышенных давлениях. По сравнению с оловянными подшипниковыми бронзами теплопроводность бронзы БрС30 в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении.

Нередко свинцовые бронзы легируют никелем и оловом и повышают механические и коррозионные свойства.

 

Применение безоловянных бронз:

 

Алюминиевые бронзы

БрАЖ9-4 — Для обработки давлением ( прутки, трубы, листы)

БрАЖН10-4-4 —  Детали химической аппаратуры

БрА9Ж3Л — Арматура, антифрикционные детали

БрА10Ж3Мц2 — Арматура, антифрикционные детали

Кремнистые бронзы

БрКМц3-1 —  Прутки, ленты, проволока для пружин

Бериллиевая бронза

БрБ2 —  Полосы, прутки, лента, проволока для пружин

 

Свинцовая бронза

БрС30 — Антифрикционные детали

 


tdsm.ru

Классификация и маркировка бронзы – какие сплавы существуют? + Видео

1 Технология получения и применение бронзы

Отлив бронзы производится в специальных печах путем сплавления меди и различных легирующих компонентов. Основной процесс плавки происходит под слоем древесного угля. Таким образом, сначала в индукционную или тигельную печь опускается древесный уголь или флюс, их разогревают до определенной температуры. Плавление меди происходит при температуре 1150-1170 градусов. После чего в печь добавляется фосфористая медь, которая улучшает текучесть основного сплава с легирующими элементами. Для удаления шлака с поверхности получаемого материала, как правило, добавляется небольшое количество кварцевого песка.

Отлив бронзы в специальной печи

Рекомендуем ознакомиться

Готовность сплава определяют путем технологических проб на излом. Материал различается по формам и обрабатывается методом прокатки или прессовки. В результате получается бронзовый лист, лента, втулка, прутки, арматура и другие детали металлопроката. При изготовлении алюминиевого сплава добавления фосфористой меди не происходит. Сам процесс плавления происходит на максимальном пределе температур, который не должен подниматься выше 1200 градусов. В случае перегрева велик риск получить бракованный материал. Для улучшения свойств в процессе ее получения также вводится небольшое количество тугоплавких металлов, их структура придает прочность.

В зависимости от типа и своих свойств бронзовые сплавы применяются в различных отраслях промышленности. Детали из бронзового сплава применяются в авиационном, корабельном и автомобильном строении, из них делают трубопроводы, элементы трения и скольжения в конструкциях, электротехнические детали, подшипники, втулки, трубы и др. Благодаря высокой антикоррозийной стойкости и стойкости к климатическим изменениям, медь в виде бронзовых сплавов применяется для изготовления памятников, колонн и других декоративных элементов в различных конструкциях.

2 Основная классификация и свойства сплавов

Бронза на основе меди и олова – это вид металлического сплава, известный с древнейших времен. Именно из нее изготавливалось большинство материалов и инструментов для быта и деятельности в древние времена. В соответствии с нормами ГОСТа материал бывает двух видов.

Первый вид – это оловянистая бронза (плотность 880 кг/м3, температура плавления 1170 градусов). Основной легирующий элемент – олово, в определенном процентном соотношении такие сплавы также могут содержать свинец, фосфор, алюминий, марганец и другие элементы. Например, цинк и фосфор добавляются в бронзовый сплав для уменьшения конечной стоимости материала, а свинец способствует улучшению свойств металлического сплава к шлифовке и другим видам обработки. Оловянистая бронза обладает большей прочностью, легкоплавкостью и упругими свойствами. Олово и дополнительные металлы или компоненты сплава также придают дополнительные антифрикционные и механические свойства.

Второй вид – безоловянная бронза. Сплав с добавлением никеля, хрома, марганца, алюминия и других материалов без содержания в составе олова. Менее прочный и различный по характеристикам скольжения, но также распространенный вариант медного сплава, который применяется в большинстве отраслей современной промышленности.

Сплав с оловом (оловянистая бронза), как с основным легирующим элементом, обладает более высокой прочностью, коррозионной, антифрикционной стойкостью, и не деформируется при изменении климатических условий (температура, влажность воздуха и пр.).

Оловянистая бронза

В зависимости от процентного соотношения в составе легирующих элементов цвет бронзового сплава может меняться – от белого и черного до золотистых и блестящих оттенков.

Помимо этого, классификация сплавов отличается и по свойствам. Наиболее распространено применение алюминиевой, бериллиевой и свинцовой бронзы.

Марки алюминиевой бронзы по ГОСТу: БрА5, БрА7, БрАМц9-2, БрАМц9-4 и др. Плотность бронзы до 8500 кг/м3. Основной легирующий материал – алюминий, от 6 до 11 процентов в составе сплава. Такой материал обладает высокой прочностью и антикоррозийной устойчивостью, легко поддается различным видам механической обработки (например, сварке аргоном). Как правило, она применяется при изготовлении различных технических деталей и оборудования (подшипников, винтов скольжения, втулок, мембран, частей двигателя и т. д.). Также широко алюминиевая бронза распространена в химической и нефтеперерабатывающей промышленности. Иногда такой сплав называют золотой бронзой из-за характерного золотистого оттенка.

Маркировка бериллиевой (черной) бронзы согласно нормам ГОСТа, в зависимости от процентного содержания бериллия: БрБ2, БрБ3 и др. Как правило, норма содержания бериллия составляет от 0,8 до 2,5 %. Благодаря специальной термической обработке при производстве такой сплав обладает повышенной прочностью. Сплав широко распространен в приборостроении, электротехнической и автомобильной промышленности (изготовление подшипников. различных электросхем, ЭБУ и т. д.).

Марки свинцовой бронзы по ГОСТу: БрСЗО, БрСЗО2 и др. Высокопрочный материал с высокой степенью теплопроводности. Применяется для изготовления сложных деталей, например, вкладышей подшипников скольжения, втулок, которые предназначены для работы при высоком давлении и нагрузках. Чаще всего детали с высоким содержанием свинца (от 27 процентов) можно встретить в механизмах, которые работают в условиях постоянного трения и скольжения.

3 Латунь – основные характеристики, маркировка и отрасли применения

Латунь – это сплав меди и цинка, процентное содержание которого варьируется в пределах, допустимых ГОСТом, и может составлять от 5 до 45 %. Цинк в данном случае является не легирующим, а основным элементом сплава. Латунь – один из самых распространенных типов медного сплава и также подразделяется на несколько видов, которые различаются между собой процентным содержанием цинка как легирующего элемента. Латунь может быть нескольких цветов (желтая, красная, золотая и т. д.) и бывает двухкомпонентной или многокомпонентной (специальной). Маркировка простой латуни, ее классификация по ГОСТу обозначается заглавной буквой «Л» + цифрой, указывающий на процентное содержание цинка. Как правило, из простой двухкомпонентной латуни делают трубки, ленты, проволоку, подшипники скольжения или листы.

Сплав меди и цинка

Многокомпонентная латунь встречается еще чаще. Маркировка – буква Л + заглавные буквы легирующих компонентов и процентные цифры. Специальная латунь, как и различные виды бронзы, применяются для изготовления различных промышленных и бытовых деталей (подшипников скольжения, втулок и др.). Кроме того, латунь такого типа широко применяется и в ювелирном производстве, как и белая бронза. Некоторые марки латуни используются и в пищевой промышленности (пищевая латунь). Томпак (марка латуни с не более чем 0,2 % примесей) широко применяется для изготовления значков, медалей и других художественных изделий. Отличия латуни от бронзы в первую очередь заключается в антифрикционных и прочностных характеристиках.

tutmet.ru

Классификация и применение бронз

При маркировке бронзы приняты определенные правила: Бр (первые две буквы)- бронза, далее буквы, означающие список легирующих элементов в нисходящем порядке их содержания, и цифры, соответствующих их количеству в процентах. Сплавы на основе олова и свинца с добавкой меди называются баббитами. Они весьма дороги, поэтому чаще всего заменяются алюминиевыми сплавами. Бронзы делятся на оловянные и безоловянные.

Оловянные бронзы

Основными легирующими элементами оловянных бронз являются цинк, никель и фосфор. Содержание цинка составляет до 10 процентов, при этом свойства бронзы практически не изменяются, но снижается цена. Свинец и фосфор улучшают антифрикционные свойства бронзы и ее обрабатываемость резкой.

Применение некоторых видов литейных оловянных бронз

Деформируемые бронзы:

— БрОФ6,5-0,4 – пружины, мембраны, антифрикционные детали, вкладыши

— БрОЦ4-3 – плоские и круглые пружины и пружинные контакты

— БрОЦС4-4-2,5 – антифрикционные детали, втулки, муфты, рубашки и так далее

Литейные бронзы:

— БрО3Ц12С5 – арматура общего назначения

— БрО5ЦНС5 – антифрикционные детали, вкладыши подшипников, сепараторы

— БрО4Ц4С17 – антифрикционные детали втулки, подшипники, сепараторы подшипников, вкладыши, шестерни, червячные пары и прочее.

Бронзы безоловянные

Существуют марки бронзы, не содержащие олова. Это двойные или многокомпонентные сплавы меди с алюминием, марганцем, железом, свинцом, никелем, бериллием или кремнием.

Свойства алюминиевых бронз: хорошая устойчивость к коррозии в морской воде, высокие механические свойства, хорошая пластичность, высокая плотность.
Свойства кремнистых бронз (содержащих никель и марганец): высокая механическая прочность и пластичность, хорошие механические и антикоррозионные качества.
Свойства бериллиевых бронз: улучшенная коррозийная стойкость и свариваемость.
Свойства свинцовых бронз: отличные антифрикционные свойства, хорошая теплопроводность.

Применение безоловянных бронз:

Алюминиевые бронзы

— БрАЖ9-4 – Для обработки давлением и механически ( прутки, трубы, листы)

— БрАЖН10-4-4 – Изделия для химической аппаратуры

— БрА9Ж3Л – Арматура, антифрикционные детали

— БрА10Ж3Мц2 – Арматура, антифрикционные детали

Кремнистые бронзы

  • БрКМц3-1 – Прутки, ленты, проволока для пружин

Бериллиевая бронза

  • БрБ2 – Полосы, прутки, лента, проволока для пружин

Свинцовая бронза

  • БрС30 – Антифрикционные детали, прокладки, втулки

 

Маркировка бронз

Безоловянные (ГОСТ 493, ГОСТ 17328,ГОСТ 18175)

Марка

Краткое обозначение марки

БрА5
БрА7
БА5
БА7
БрАЖ9—4;
БрА9ЖЗЛ;
БрА10ЖЗ;
БрА10ЖЗр
БАЖ
БрАЖН10—4—4;
БрАЖНМц9—4—4—1;
БрА10Ж4Н4Л;
БрА9Ж4Н4Мц1;
БрА11ЖбНб
БАЖН
БрАЖМц10—3—1,5;
БрА10ЖЗМц2
БАЖМц
БрМц5
БрКд1
БрБ2
БМц
БКд
ББ
БрБНТ1,7;
БрБНТ1,9;
БрБНТ1,9Мг
ББН
БрКН1-3
БрКМцЗ—1
БрМг0,З
БрСр0,1
БрХ1
БКН
БКМц
БМг
БСр
БХр
БрХ1Цр;
БрХЦрКа;
БрЦр
БЦр
БрАМц10—2;
БрА10Мц2Л;
БрАМц9—2;
БрА9Мц2Л
БАМц
БрА7Мц15ЖЗН2Ц2
БрС30
БрСуЗНЗЦЗС2ОФ
БрНК1,5—0,5
БАМц15
БС
БСуС
БНК
Оловянные (ГОСТ 613, ГОСТ 5017)

Марка

Краткое обозначение марки

Бр0ЗЦ12С5Б0З
БрОЦС4—4—2,5;
БрОЦС4—4—4;
Бр04Ц7С5
Б04
Бр05Ц5С5Б05
Бр06Ц6СЗ;
Бр06Ц6С2х
Б06
Бр0Ц4—3
Бр08Ц4
Бр010Ц2
Бр0ЗЦ17С5Н1
Бр04Ц4С17
Бр05С25
Б0Ц4
Б0Ц8
Б0Ц10
Б0ЗН
Б04С
Б05С
Бр08С12;
Бр08С21
Б08С
Бр010С10
Бр010Ф1
Бр0Ф2—0,25
Бр0Ф4—0,25
Бр0Ф6,5—0,15
Бр0Ф6,5—0,4
Бр0Ф7—0,2
Бр0Ф8,0—0,3
БрМц07—3
Б0С10
Б0Ю
Б0Ф2
Б0Ф4
Б0Ф6
Б0Ф6
Б0Ф7
Б0Ф8
Б0Мц

dianit2007.ru

Маркировка латуней и бронз.

Латуни обозначаются буквой «Л», а бронзы «Бр», затем идут буквы, означающие легирующие элементы: О – олово, Ц – цинк, Мц – марганец, Ж – железо, Ф – фосфор, Б – бериллий, Х – хром, С – свинец, А – алюминий, Н – никель, Су – сурьма и т.д. И бронзы, и латуни подразделяются на деформируемые и литейные, что отражается в маркировке.

В простых (нелегированных) деформируемых латунях число, следующее за буквой «Л», означает % Cu. Например, Л80 – 80% Сu, Zn – остальное (20%). Если деформируемая латунь многокомпонентна, за буквой «Л» подряд идут обозначения всех легирующих элементов. Например, ЛАН59-3-2 (А – алюминий, Н – никель). Первая цифра в марке – процент меди, последующие – процент легирующего элемента в том же порядке, что и буквы, цинк – остальное. Таким образом, ЛАН59-3-2 расшифровывается так: деформируемая латунь с 59% Cu, 3% Al, 2% Ni, Zn – остальное. Деформируемые бронзы маркируются также, только количество меди не указывается, например, БрОЦС8-4-3 расшифровывается так: деформируемая оловянная бронза, содержащая 8% Sn, 4% Zn, 3% Pb, остальное Cu.

Маркировка литейных латуней и бронз идентична: после каждой буквы, означающей легирующий элемент, идет цифра – процентное содержание этого легирующего элемента. Например, ЛЦ35Н2ЖА литейная латунь, Zn 35%, Ni 2%, Fe до 1%, Al – до 1%, Cu – ост. БрА9Мц2 – литейная алюминиевая бронза, содержащая Al 9%? Mn 2%, Cu – ост. БрА9Мц2 – литейная алюминиевая бронза, содержащая Al 9%, Mn 2%, Cu – ост.

 

Латуни.

На рис. 12.1 представлена диаграмма Cu-Zn, где видно, что в меди растворяется до 39% Zn. На рис. 12.2 показано, как изменяются свойства в зависимости от содержания цинка в латуни. Видно, что при растворении Zn увеличивается не только прочность, но и пластичность латуней (максимум проходит при 30% Zn), таким образом, однофазные -латуни более пластичны, чем чистая медь. Такие латуни (Л96, Л90 – томпак, Л80 – полутомпак, Л68 – патронная (гильзовая) и др.) – подвергаются обработке давлением. Из них изготавливаются листы, трубы, проволока, сильфоны, музыкальные инструменты, трубы для теплообменников и др.

 

 

Рис. 12.1 Диаграмма Cu-Zn

Рис. 12.2 Влияние Zn на механические свойства латуней.

При содержании Zn больше 39% в латунях появляется хрупкая -фаза, при этом прочность латуней становится наибольшей, а пластичность снижается. При переходе в однофазную -область и прочность, и пластичность резко падают, поэтому латуни не изготавливают с содержанием Zn более 45% (см. рис. 12.2). Двухфазные латуни обрабатываются давлением при температурах выше 7000, когда -фаза разупорядочивается и становится достаточно пластичной.

Двухфазные латуни часто легируют, при этом прочность повышается, а пластичность падает.

Свинец улучшает обрабатываемость резанием (латуни ЛС60-1 и ЛС59-1 – автоматные), олово, никель, алюминий и марганец увеличивают антикоррозионную стойкость. Например, ЛО70-1, ЛО62-1 называются «морские» латуни, ЛН65-5 для конденсаторных трубок.

Из латуней детали можно изготавливать не только давлением, но и литьем: они обладают хорошей жидкотекучестью, мало склонны к ликвации, что объясняется небольшим температурным интервалом кристаллизации (линии ликвидус и солидус очень близки (см. рис. 12.1). Обычно литейные латуни многокомпонентные, причем добавки улучшают литейные свойства, а также прочность и придают специальные свойства (антикоррозионные, антифрикционные, жаропрочные и т.д.). Например, из латуни ЛЦ30А3 изготавливают детали для судостроения и машиностроения, из латуни ЛЦ25С2 – штуцера гидросистем автомобилей, из ЛЦ23А6ЖЗМц – ответственные детали и антифрикционные детали.

 

Бронзы.

Оловянные бронзы являются старейшими металлическими сплавами (бронзовый век). Сейчас оловянные бронзы применяются все реже из-за дефицитности олова.

Бронзы, содержащие до 4-5% Sn, обычно однофазные, а при большем содержании Sn- двухфазные и имеют структуру +эвтектоид ( +Cu31 Sn8). Химическое соединение Cu31Sn8 ( -фаза) очень хрупкое. В практике применяют только бронзы с содержанием Sn до 10-12%, т.к. при большем содержании сплавы становятся очень хрупкими.

Бронзы легируют: Zn – для удешевления, Р – улучшает литейные свойства, Ni — повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию, свинец – повышает плотность отливок, улучшает обрабатываемость резанием и придает антикоррозионные и антифрикционные свойства.

Деформируемые бронзы обычно однофазные, из них изготавливают прутки, ленты, проволоку, пружины или другие элементы. Например, из БрОЦ4-3 делают плоские и круглые пружины, БрОФ7- 0,2 – прутки с высокой коррозионной стойкостью и износостойкостью, а также с хорошими пружинными свойствами.

Оловянные бронзы имеют рассеянную усадочную раковину, в то же время внешние очертания очень точно копируют форму, поэтому их применяют для деталей очень сложной конфигурации, а также художественного литья.

 

 

Рис. 12.3

а) — диаграмма Cu-Al

б) — влияние концентрации

алюминия на механические

свойства алюминиевых бронз

 

 

 

 

Рис. 12.4

а) – диаграмма Cu-Be

б) – влияние концентрации

бериллия на механические

свойства бериллиевых бронз

 

Двухфазные бронзы имеют очень высокие антифрикционные свойства, поэтому из них делают вкладыши подшипников, червячные пары и т.д. Например, из бронзы БрО10С10 отливают подшипники скольжения, БрО5Ц5С5 – арматура, вкладыши подшипников.

 

Алюминиевые бронзы.В связи с тем, что Al не является дефицитным металлом, алюминиевые бронзы применяются наиболее широко. Al в меди растворяется до 9% (см. рис. 12.3), при содержании более 9% Al в сплаве появляется эвтектоид ( ), где – химическое соединение Cu32 Al9. Однофазная алюминиевая бронза БрА5 пластична, используется для изготовления монет, медалей и обладает высокой коррозионной стойкостью.

Двухфазные алюминиевые бронзы имеют пониженную пластичность, но высокую прочность, которую можно увеличить термической обработкой. При нагреве эвтектоид превращается в -фазу, которая при охлаждении с критической скоростью превращается в мартенсит (игольчатую структуру, подобную закаленной стали). Кроме того, при определенных скоростях охлаждения можно получить измельченную эвтектоидную смесь (подобно трооститу и сорбиту в стали).

При содержании более 11% Al прочность снижается (рис. 12.3, б) из-за хрупкости, поэтому более 11% Al не добавляют. Двухфазные бронзы обычно легируют: железо измельчает зерно и повышает механические и антифрикционные свойства: никель улучшает механические свойства и износостойкость как при низких, так и высоких температурах. Бронзы БрАЖН10-4-4 и БрАЖН11-6-6 являются наиболее прочными из всех алюминиевых бронз, при этом они обладают хорошими антифрикционными свойствами, химической стойкостью, поэтому из них изготавливают детали химической и пищевой промышленности, трущиеся детали.

Литейные свойства алюминиевых бронз ниже, чем у оловянных, но они обеспечивают высокую плотность отливок и более прочные.

Бериллиевые бронзы(БрБ2, БрБНТ1, 9 и др.) содержат до 2% бериллия. Предельная растворимость бериллия (см. рис. 12.4) в меди составляет 2,7%, а при 3000С – 0,2%. При нагреве бронзы до температуры закалки 760-7800С образуется однофазный -раствор, а при охлаждении в воде получается пересыщенный раствор бериллия в меди. При старении 300-3500С в течение 3ч. из пересыщенного -раствора выделяются дисперсные частицы -фазы (Cu Be), что сильно повышает прочность (рис. 12.4, б) и твердость ( =1250 МПа, =3-5%, НВ375). Бериллий дорогой и редкий металл, однако комплекс свойств этих бронз настолько высокий, что их производство экономически оправдано.

Бериллиевые бронзы используют в приборостроении для изготовления ответственных пружин, мембран и других пружинящих деталей. Она обладает химической стойкостью, хорошей свариваемостью и обрабатываемостью режущим инструментом.

Бериллиевая бронза является искробезопасной, поэтому из нее делают электрические контакты и ударный инструмент для работы во взрывоопасных атмосферах.

Свинцовистые бронзы (БрС30, БрС60Н2, 5 и др.) применяются для изготовления вкладышей подшипников скольжения. Свинец практически не растворяется в жидкой меди, поэтому не образуется эвтектики, и интервал кристаллизации составляет более 6000, что приводит к ликвации. Для ее предотвращения сплав надо ускоренно охлаждать или легировать. После затвердевания сплав состоит из кристаллов меди и включений свинца. По сравнению с оловянистыми бронзами теплопроводность Бр30 в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении.

Из-за невысоких механических свойств ( =60МПа, =4%) свинцовистую бронзу наплавляют тонким слоем на стальные трубы (ленты).

Такие биметаллические подшипники просты в изготовлении, легко заменяются при изнашивании и более дешевые. Для упрочнения кристаллитов меди БрС30 легируют Sn и Ni.

Кроме оловянных, свинцовых, алюминиевых и бериллиевых бронз применяются кремниевые, марганцевые, сурмянистые, кадмиевые и др. бронзы.

 


Похожие статьи:

poznayka.org

состав и маркировка, виды сплавов и их свойства, сферы применения

Бронза, которая так издавна известна людям, представляет собой ценнейший сплав с уникальными характеристиками. В статье будет подробно рассмотрен состав бронзы, ее виды и особые свойства каждого из них. Также интересно будет узнать о современной сфере применения этого сплава.

Что такое бронза?

Бронза является многокомпонентным сплавом, состоящим из двух и более элементов, основной из которых медь. Остальные элементы называются легирующими и используются для усовершенствований показателей металла. Доля легирующих составных в бронзе может быть от 2,5%. Применяют в этом качестве марганец, олово, свинец, хром, фосфор, железо и другие элементы, кроме цинка. Сочетание меди и цинка, носит наименование латуни.

В зависимости от количественного содержания в сплаве меди добавок, бронза будет иметь различный цветовой оттенок. Огненно красные оттенки говорят о высоком проценте меди, а вот холодный стальной цвет – о наличие в бронзе не более 35% меди.

История бронзового сплава

Бронза, как известно еще со школьных учебников, применялась с очень давних времен. Самыми древними сплавами, сделанные людьми, были сплавы меди и олова. Находки в районе Месопотамии и Южного Ирана свидетельствуют о том, что первые бронзовые изделия датируются III тысячелетием до н.э. Из меди изготавливалось все: посуда (тарелки, кувшины и горшочки) оружие (мечи, наконечники стрел и топоры), зеркала, деньги в виде монет и, конечно, самые разнообразные украшения. Античные греческие скульпторы (V-IV век до н.э.) также оценили качества бронзы при отливке крупногабаритных статуй. Подобная технология используется и в наше время.

В средневековье, такое обильное на войны, из сплава меди и олова отливали пушки и снаряды для артиллерии. Наиболее известное воплощение бронзы – колокол, варьируя состав, размер и толщину стенок, мастера добивались самых приятных звучаний бронзового колокола, которое разливалось по округе.

Служа людям своими уникальными свойствами, она не теряет своей популярности. Происхождение слова связывают с персидским словом, обозначающим медь – berenj. В дальнейшем оно было трансформировано в итальянское слово bronzo.

Маркировка бронзы

Чтобы обозначить тот или иной сплав его маркируют следующим образом:

  • Вначале стоит буквенное сочетание «Бр» — бронза;
  • Далее, буквы, указывающие на основные легирующие элементы;
  • В конце цифры, определяющие содержание легирующих элементов в материале.

Так, примером может служить маркировка БрО5 – содержание в сплаве 5% олова, БрА5 — 5% алюминия.

Маркировка необходима не только для определения состава и свойств бронзы, но и ее удельного веса. Чтобы это сделать, достаточно воспользоваться таблицей из справочника. Но если марка неизвестна, тогда поможет химический анализ. Это необходимо для вычисления объема заготовки, так как ее формула отражает отношение массы к объему. Зная удельный вес отдельно взятого сплава можно вычислить объем детали с определенной массой и наоборот, какой будет вес у бруска заданной величины.

Свойства бронзы

Как уже было отмечено, свойства бронзы напрямую зависят от наличия в ней одной или нескольких легирующих элементов, а также от их процентного содержания.

Бронза обладает:

  • Более высокой коррозионной стойкостью, прочностью и более низким коэффициентом трения, нежели у латуни;
  • Стойкостью на воздухе, в соленой воде, углекислых растворах и растворах, содержащих органические кислоты;
  • Способностью к сварке и пайке;
  • Оттенками от красного до белого;
  • Другие показатели зависят от состава.

Состав бронзы

Далеко не всякое сочетание в сплаве меди и другого элемента является бронзой. Медь и цинк, как уже было сказано, образуют желтовато-золотистый сплав под названием латунь. А вот медь с никелем воплощаются в мельхиор, использовавшийся некогда для дивно звучащих ложек, а в большей степени для монет. Он ценится за то, что долго не теряет свой серебристый оттенок и сияние.

Оловянная бронза

Основной легирующий компонент такой бронзы олово. Дополнительно в сплав вводится свинец, фосфор, мышьяк и цинк. Олово наделяет медь особыми качествами – лучшей легкоплавкостью, твердостью и упругостью. Такое сочетание свойств идеально подходит для полировки. Другие легирующие элементы делают сплав стойким к коррозии и более удобным для литья.

При введении олова до отметки 5% от общей массы, начинает снижаться пластичность сплава, а при 20% олова материал становится хрупким. По этой причине сплавы, где доля олова превышает 6-ти % барьер, пригодны в основном для литья, но для проката или ковки не годятся. Для того чтобы бронзовый сплав был более пригоден для механической обработки в него вводят о 5% свинца, который обеспечивает облегченное стружколомание. Фосфор раскисляет сплав, который называют фосфористым, если процент этого элемента более единицы.

Применение цинка помогает значительно удешевить материал, практически не оказывая какого-либо влияния на качество сплава олова с медью. Таким образом, в состав вводиться до 10% цинка без изменения механических свойств, снижая себестоимость продукции.

Наибольшая доля олова может составлять 33%, при которой бронза обретает приятный серебристо-белый цвет. В зависимости от изменения доли этого элемента, достигается цвет материала от красного до желтого.

Специальная бронза (без олова)

Сплавы с медью, не содержащие олова в качестве легирующего компонента, называют специальной или безоловяной бронзой. Такие сплавы меди с алюминием, железом, свинцом, кремнием и т.д. бывают самого разного предназначения. Они могут значительно превосходить по качествам сплавы с оловом, а их цветовая гамма еще более богата разнообразием.

Алюминиевая бронза выигрывает по механическим качествам в сравнении с оловянной. Вместе с тем алюминиевые сплавы химически устойчивы. Сплав меди с кремнием и цинком показывает отличную текучесть в жидком состоянии.

Бериллиевая бронза превосходит все остальные по упругости, обладая при этом высокую твердость. Кроме того, отмечается высокая свариваемость, химическая устойчивость бериллиево-медного сплава. Он отлично работает с режущим инструментом, подаваясь его обработке. По этой причине этот сплав подходит для изготовления таких деталей и элементов, как мембраны, пружины, контакты с пружинящими свойствами. Они легко и надежно свариваются и являются долговечными.

Характеристики бронзы

Технологические характеристики

По своим технологическим свойствам бронзы могут быть:

  • Деформируемые или легко поддающиеся механическому воздействию. Такими свойствами обладают сплавы, содержащие не более 6% олова. Их пластичность позволяет производить штамповку, ковку и изготавливать рифленые бронзовые материалы. Именно из деформируемых сплавов делают бронзовую проволоку, ленту и листы и т.п.;
  • Литейные – рассчитанные на фасонное литье. Из таких литейных бронз на основе меди и олова изготавливают машинные детали, которые могут работать в морской воде, а также шестеренки и вкладыши для подшипников.

Теплопроводность бронзовых сплавов

Если говорить о теплопроводности, то она падает с введением легирующих добавок. Несмотря на то, что медь очень хорошо проводит тепло, ее сплавы с другими компонентами теряют больший процент этого показателя. Невысокая теплопроводность делает бронзу непригодной для узлов трения, сварочных электродов и прочих элементов, где требуется быстра отдача и отвод тепла. Однако, низколегированные бронзовые сплавы близки по теплопроводности к меди.

Производство бронзы

Процесс получения этого металла происходит в электроиндукционных печах или тигельных горнах, где медь сплавляется с легирующими добавками. Плавка проходит под пластом флюса или древесного угля. Смесь исходного материала для плавления может быть приготовлена как из свежих металлов, так и из вторсырья.

Процесс производства бронзы:

  1. В разогретую печь помещается определенная порция угля или флюса;
  2. В печь загружают медь, где она плавиться и разогревается до нужной температуры;
  3. Расплавленный материал раскисляется при помощи фосфористой меди;
  4. В раскисленный расплав добавляют легирующие компоненты, доведенные до горячего состояния. Тугоплавкие легирующие добавки вводя в виде лигатур;
  5. Все перемешивается до полного растворения составляющих и нагревается до температуры по технологии;
  6. Перед тем как начать разливку, делают повторное раскисление фосфористой медью для удаления ее окислов;
  7. Полученный бронзовый сплав прекрасно плавится и заполняет формовочные емкости в виде слитков стандартной и круглой формы;
  8. Слитки проходят прокатку или пресс-обработку.

Сферы применения

Благодаря своим разнообразным свойствам бронзу применяют в машиностроении, ракето- и авиастроении, судостроении и многих других отраслях. Качество антикоррозионной устойчивости, износостойкости и низкий коэффициент трения сделало ее незаменимым материалом для машин и агрегатов, которые вовлечены в подвижные узлы с высоким трением. С другой стороны, бронзовые детали нуждаются в периодическом обновлении. Благодаря химической устойчивости безоловянные сплавы бронзы применяется для проката элементов химпрриборов, изготовления регулирующей арматуры для различных трубопроводов.

Несменная популярность применения бронзы в изготовлении скульптур обусловлена ее пригодностью для литья, а также атмосферной устойчивостью, долговечностью и прочностью. Немаловажен фактор внешней привлекательности бронзовой скульптуры – цвет и блеск, притягивающий взгляд. Кроме того, бронза придает изделию солидности с эффектом старины. По этой причине из бронзовых сплавов изготавливают сложнейшие люстры, канделябры и другие элементы декора в театрах и дворцах.

Оцените статью: Поделитесь с друзьями!

stanok.guru

СВОЙСТВА БРОНЗ

БРОНЗЫ  и  БРОНЗОВЫЙ  ПРОКАТ 

Классификация бронзовых сплавов 

     Бронзами называются сплавы на основе меди, в которых основными легирующими элемен-тами являются олово, алюминий, железо и другие элементы (кроме цинка, сплавы с которым относятся к латуням). Маркировка бронз состоит из  сочетания «Бр»,  букв, обозначающих основ-ные легирующие элементы и цифр, указывающих на их содержание.

      По химическому составу бронзы классифицируются по названию основного легирующего элемента. При этом бронзы условно делят на два класса: оловянные (с обязательным присут-ствием олова) и безоловянные.

      По применению бронзы делят на деформируемые, технологические свойства которых допускают производство проката и поковок, и литейные, используемые для литья. В то же время многие бронзы,  из которых производится прокат, используются и для литья.

      Химический состав и марки бронзовых сплавов определены в следующих ГОСТах:

Литейные: оловянные в ГОСТ 613-79,  безоловянные в ГОСТ 493-79.

Деформируемые: оловянные в ГОСТ 5017-2006,  безоловянные в ГОСТ 18175-78

       Многообразие бронз отражает приведенная ниже таблица. В ней представлены практически все деформируемые и часть литейных бронз.  Бронзы, используемые исключительно как литейные, помечены «звездочкой». В дальнейшем будут рассматриваться преимущественно деформируемые бронзы. Структура бронзовых сплавов кратко рассмотрена в — Структура и свойства сплавов.

 
                                              ОЛОВЯННЫЕ БРОНЗЫ 
      БрО5*   БрОФ4-0.25    БрОЦ4-3       БрОС8-12*
  БрОЦС4-4-2.5 
     БрО10*   БрОФ6.5-0.15    БрОЦ8-4*       БрОС5-25*  БрОЦС4-4-17
     БрО19*     БрОФ7-0.2   БрОЦ10-2*      БрОС10-10*  БрОЦС5-5-5*
      БрОФ10-1*        БрОС6-15*  БрОЦС6-6-3*
                                                     АЛЮМИНИЕВЫЕ БРОНЗЫ
      БрА5    БрАМц9-2    БрАЖ9-4   БрАЖМц10-3-1.5  БрАЖН10-4-4
      БрА7   БрАМц10-2*   БрАЖНМц10-4-4-1  БрАЖН11-6-6*
 КРЕМНИСТЫЕ 
 БЕРИЛЛИЕВЫЕ  КАДМИЕВЫЕ       МАГНИЕВЫЕ   ХРОМОВЫЕ
   БрКМц3-1        БрБ2     БрКд1  БрМг0.3 (0.5 и 0.8)
      БрХ0.8
    БрКН1-3      БрБ2.5 БрКдХ0.5-0.15 
            БрХ1
   БрКН0.5-2    БрБНТ-1.9        БрХ1Цр
 СЕРЕБРЯНЫЕ ЦИРКОНИЕВЫЕ 
   СВИНЦОВЫЕ    МАРГАНЦЕВЫЕ 
    БрСр0.1     БрЦр0.2     БрС30*          БрМц5 

  Физические свойства бронзовых сплавов     

      Модуль упругости Е разных марок меняется в широких пределах: от 10000 (БрОФ, БрОЦ) до 14000 (БрКН1-3, БрЦр). Модуль сдвига G меняется в пределах 3900-4500. Эти величины сильно зависят от состояния бронзы (литье, прокат, до и после облагораживания). Для нагартованных лент наблюдается анизотропия по отношению к направлению прокатки.        

       Обрабатываемость резанием практически всех бронз составляет 20% (по отношению к ЛС63-3). Исключение составляют оловянно-свинцовые бронзы  БрОЦС с очень хорошей обраба-тываемостью ( 90% для БрОЦС5-5-5).

       Ударная вязкость меняется в широких пределах, в основном она меньше, чем для меди (для сопоставимости результатов все значения приведены для литья в кокиль):

 

БрОФ 10-1БрОФ 6.5-0.4БрАЖ 9-4БрА5 Медь БрМц5
БрОЦС 6-6-3БрОЦС 4-4-2.5БрАЖМцБрА7
БрОС 5-25БрОЦ4-3БрАМц 9-2БрКМц3-1
Значение ударной вязкости >> увеличение >>
1 – 34 – 66 – 815 – 1616 – 1820

     Электропроводность большинства бронзовых сплавов существенно ниже, чем у чистой меди и многих латуней (значения удельного сопротивления приведены в мкОм*м):

 БрКд     
МедьБрМгЛ63БрОЦ4-3БрАМцБрКМцБрОФ7-0.2
БрСрБрЦрЛС59-1 БрОЦС5-5-5БрА7 БрАЖМц
 БрХ   БрАЖ9-4  БрАЖН
Значения удельного электросопротивления >> ухудшение электропроводности>>
0.020.02 — 0.040.0650.09-0.10.1-0.130.150.19
 

Сопротивление серебряной бронзы (медь легированная серебром до 0.25%) такое же как у чистой меди, но такой сплав имеет большую температуру рекристаллизации и малую ползучесть при высоких температурах.      

      Низкое удельное сопротивление имеют низколегированные бронзовые сплавы БрКд, БрМг, БрЦр, БрХ.. Величина электропроводности имеет существенное значение для бронз, используемых для изготовления коллекторных полос, электродов сварочных машин, для пружинящих электрических контактов. Приведенные значения являются ориентировочными, т.к. на величину сопротивления оказывает влияние состояние материала. Особенно сильно оно может измениться под влиянием облагораживания (в сторону уменьшения, это касается БрХ, БрЦр, БрКН, БрБ2 и др.). Например электросопротивление БрБ2 до и после облагораживания составляют 0.1 и 0.07 мкОм*м.

     Теплопроводность большинства бронз существенно ниже теплопроводности меди и ниже теплопроводности латуней (значения приведены в кал/cм*с*С):

   
МедьБрКдБрКН1-3Л63БрАЖНБрАМцБрОФ10-1БрКМц
БрСрБрМгБрА5ЛС59-1БрБ2БрАЖ БрМц5
 БрХ  БрОЦ4-3БрАЖМц  
Значения теплопроводности >> ухудшение >>
0.90.8-0.60.250.250.25-0.180.17-0.140.13-0.120.1-0.09

     Высокую теплопроводность имеют низколегированные бронзы. Облагораживание улучшает теплопроводность. Высокая теплопроводность особенно важна для обеспечения отвода тепла в узлах трения и в электродах сварочных машин. Низкая теплопроводность облегчает процесс сварки бронзовых деталей.

 Механические свойства бронзового проката

     Если из всего разнообразия латуней массово производится  прокат только двух марок (ЛС59-1 и Л63), то для массового производства полуфабрикатов из бронзы используется значительно большее количество  марок.  Бронзовый прокат включает в себя  круги, трубы, проволоку, ленты, полосы и плиты.  

 Бронзовые круги

     Бронзовые круги выпускаются прессованными, холоднодноформированными и методом непрерывного литья. Способ производства и диапазон производимых диаметров определяется технологическими свойствами конкретной бронзы. В таблице указано соответствие между марками бронз, диаметром прутка и способом производства. 

     

Общее представление об основных механических свойствах бронзовых кругов  дает следующая гистограмма.

 

 

      Непрерывнолитые круги.   

      Методом непрерывного литья массово производятся БрОЦС5-5-5, БрАЖ9-4, реже БрОФ10-1 и БрАЖМц10-3-1.5. В изделиях, полученных этим способом, отсутствуют дефекты, характерные для литья в кокиль или песчаную форму. Поэтому по своим свойствам непрерывнолитые полуфабрикаты существенно превосходят отливки в кокиль и близки к прессованным полуфабрикатам.

       Круги из  БрОЦС5-5-5 и БрОФ10-1 имеют относительно гладкую поверхность, нарушаемую неглубокими вмятинами от тянущего устройства. Круги этих марок производятся только непрерывнолитым спосо

normis.com.ua

22. Латуни и бронзы, их маркировка и область применения.

Латунь – это сплав меди с цинком, содержащий до 45% цинка. Латуни бывают простые – сплав только меди и цинка, а также специальные, в состав которых входят олово, свинец, никель, марганец и другие элементы для придания сплавам высоких коррозионных свойств, хорошей обрабатываемости реза­нием, повышенной твердости и прочности.

Простые латуни маркируют буквой Л и двухзначны­ми цифрами, указывающими процент содержания меди. В специальных латунях за буквой Л следуют буквенное обозначение основных легирующих элементов и цифры, соответствующие содержанию меди и этих элементов. Легирующие элементы в латунях и бронзах обозначают буквами русского алфавита: О — олово, С — свинец, Ф — фосфор, Н — никель, Мц — мар­ганец; Ж -железо, К -кремний, А — алюминий, Ц – цинк, Б – бериллий, Мш — мышьяк и т. д. Например, марка Л90 обозначает латунь с содержанием 90% Сu, остальные 10% -Zn; марка ЛС59-1 содержит 59% Сu, 1% РЬ и остальное — цинк.

Область применения латуней:

-ЛС59-1, ЛС74-3, ЛС64-2 – детали, получаемые горячей штамповкой с последующей обработкой резанием;

-ЛО70-1 и ЛО62-1 — детали в морском судо­строении;

— ЛН65-5 — вкладышей подшипни­ков;

— ЛА67-2.5, ЛАЖ60-1-2, ЛКС80-3-3 — литые вкладышей подшипников, втулки

Бронза — это сплав меди с оловом, свинцом, никелем, в том числе и с цинком.

Бронзы обладают высокими механическими и анти­фрикционными свойствами, коррозионной устойчиво­стью, хорошими литейными свойствами и обрабатывае­мостью резанием. Маркируют бронзы буквами Бр, следующие буквы указывают на элементы, входящие в состав бронзы, а цифры показывают процентное содержание данных эле­ментов. Например, деформируемые бронзы маркируются: марка Бр. ОФ4-0,25 обозначает оловянную бронзу, со­держащую 4% Sn, 0,25% РЬ и остальное — медь.

Область применения бронз:

-Бр. А5, Бр. А7, Бр. АЖ 9-4, Бр. АЖН 10-4-4, Бр. АЖМц 10-3-1,5 — втулки, фланцы, шестерни, рабо­тающие при температурах 400…500 °С;

-Бр.КН1-3, Бр.КМц 3-1 — пружины и пру­жинящие детали, работающие при температурах до 250 °С;

— Бр.Б2 — мем­браны, пружины;

-Бр.С30 вкладыши подшип­ников скольжения.

23. Алюминиевые сплавы, их маркировка и область применения.

Сплавы, полученные на основе системы А1-Si(АЛ2, АЛ4, АЛ9), называютсилуминами.Они содержат от 6 до 13%Si. Данные сплавы применяют для изготовления деталей сложной конфигурации и средней нагруженности.

К сплавам, упрочняемым термообработкой, относятся сплавы системы А1-Сu-Мg, называемыедюралюминами. Упрочняют их закалкой с последующим старением.

Медь и магний — основные элементы в дюралюминах, которые сообщают сплавам высокие механические свой­ства после соответствующей термической обработки.

Все сплавы типа дюралюмина обозначают буквой Д и цифрами, которые показывают условный номер марки сплава. Например, Д1, Д16 (3,8…4,9% Сu, 1,2…1,8% Мg, 0,3…0,9% Мn, АI- остальное), которые применяют для изготовления лонжеронов самолетов, обшивки, силовых каркасов, строительных конструкций, кузовов грузовых автомобилей.

При закалке сплавы Д1 и Д16 нагревают до 495… 510 °С, а затем охлаждают в воде при 40 °С. После за­калки следует старение, когда сплав выдерживают при комнатной температуре несколько суток (естественное старение) или в течение 10…24 ч при температуре 100… 190°С (искусственное старение).

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *