технология производства гипса | Новости в строительстве
Гипс широко используется в строительстве при производстве различных изделий и строительных растворов.Гипс вещество белого цвета или белого с серым оттенком, который очень быстро твердеет, но имеет очень низкую водостойкость. Технология производства гипса сводится к обжигу природного гипса в производственных печах а полученный в результате обжига гипсовый камень измельчают.
Состав статьи:
♣ Технология производства гипса во вращающихся печах.
♣ Производство гипса способом совмещенного помола и обжига гипса.
♣ Производство гипса в варочных котлах.
Гипс является быстродействующее и быстросхватывающееся воздушное вяжущее.Гипсовые вяжущие вещества делятся на :
♦ Высокопрочный гипс,
♦ Строительный гипс,
♦ Ангидритовое вяжущее.
Гипсовые вяжущие вещества изготавливаются из гипсового камня CaSO4*2h3O,ангидрита CaSO4 и некоторых отходов химической промышленности которые содержат безводный или двуводный сульфат кальция.в природном гипсе отсутствуют обычно примеси глины,известняка,песка и других веществ. Гипс получают путем обжига при высокой температуре двуводного природного гипса,в следствии протекания реакции CaSO4*h3O =CaSO4*0.5h3O+1.5h3O.
Читать далее на http://stroivagon.ru гипсовые вяжущие вещества
Строительный гипс.
♦ В природном гипсе обычно присутствуют примеси следующих пород: песка, известняка, глины которые снижают прочность и качество строительного гипса. Поэтому для получения качественного гипса, которого можно использовать в строительстве, в медицине и других областях его приходится обрабатывать термически. На сегодняшний день гипс обрабатывают несколькими способами, которые отличаются методом обжига в печах.
Обжигают гипс :
1. В шахтных печах, кольцевых, камерных и вращающихся печах. После обжига полученный гипсовый камень измельчают.
2. В варочных котлах с предварительным помолом гипсового камня.
3. Одновременно с помолом в одном аппарате.
Рисунок -1. Технологическая схема производства строительного гипса во вращающихся печах
1- лотковый питатель, 2-бункер гипсового камня, 3-ленточный транспортер , 4- молотковая дробилка, 5- элеватор.
6- шнеки, 7- бункер гипсового щебня, 8-тарельчатые питатели, 9-бункер угля, 10-топка, 11-вращающаяся печь типа сушильного барабана.
12-бункер обожженного щебня, 13- пылеосадительная камера, 14-вентилятор,15-бункер готового гипса, 16-шаровая мельница.
В зависимости от величины кусков исходного сырья ( гипсового камня) а также от величины требуемых размеров кусков направляемых в печь с целью обжига проводят дробление сырья по одноступенчатой схеме или по двухступенчатой схеме в дробилках-4. Для этого сырье загружают в бункер гипсового камня-2, затем с помощью лоткового питателя-1 непрерывно сырье поступает на ленточный транспортер-3, который направляет ее в дробилку-4.
Дробилки могут быть молотковые или щековые и они дробят исходный гипсовый камень на щебень с размерами частиц от 0 …20-35 мм.
Полученный таким образом гипсовый щебень ( если в этом есть необходимость) подвергают грохочению с целью получения фракций 0…10; 10…20; 20…35 мм. После грохочения фракции гипсового щебня направляются далее в бункер гипсового щебня-7 расположенный над печью обжига-11.Щебень различных фракций обжигают раздельно потому что для каждой фракции требуется отдельный, соответствующий режим обжига.
Читать далее на http://stroivagon.ru гипсовые и гипсобетонные изделия
Из бункера -7 гипсовый щебень с помощью тарельчатого питателя направляется непрерывно во вращающуюся печь. В зависимости от конструкции вращающейся печи, обжиг гипсового щебня может осуществляться двумя методами:
2. Или за счет наружного обогрева стенок барабана вращающейся печи.
Вращающиеся печи для обжига гипсового камня типа сушильного барабана могут работать на жидком, газообразном или твердом топливе. В зависимости от используемого вида топлива разрабатываются и технологии обжига. Например, при входе в печь температура газов при прямотоке -950…1000 °С, при противотоке- – 750…800°С. При выходе из печи температура газов при прямотоке-– 170…220°С, при противотоке – 100…110°С.
Обоженный гипсовый щебень поступает далее из сушильного барабана (из печи) в бункер обожженного щебня -12 с помощью элеватора или же в зависимости от конструкции расходные бункеры могут располагаться прямо под сушильным барабаном. Равномерное питание шаровой мельницы обеспечивается питателем лоткового типа-8 который расположен под бункер обожженного щебня-12.
В шаровую мельницу обожженный щебень поступает с температурой в 80…100°С. В шаровой мельнице -16 производится помол обожженного гипсового щебня и выравнивание вещественного состава гипса за счет перехода пережога и недожога в полугидрат. Далее из шаровой мельницы готовый продукт направляется в бункер готового гипса -15 с помощью элеватора.
Из бункера готового гипса продукт направляется в бункеры хранения или на расфасовку. В процессе производства гипсового камня используют пылеосадительные камеры -13, обеспечивающие высокую очистку воздуха от пыли.
Технология производства строительного гипса
♦ Считается что наиболее совершенен способ получения строительного гипса, который основан на методе совмещенного помола и обжига гипсового камня позволяющий механизировать производственный процесс.
Рисунок-2. Схема совмещенного помола и обжига гипса
Далее, измельченное сырье пройдя щековую дробилку-21 подается питателем-20 в приемное устройство -19 молотковой дробилки-18.
В молотковой дробилке гипсовый щебень подвергается измельчению во второй раз, до получения нужной фракции например,10-20 мм. Далее, с помощью элеватора
В трубной мельнице происходит тонкий помол и сушка гипсового камня за счет газов, которые через подтопок-4 по принципу прямотока или противотока подаются с температурой 600-700 С. В процессе вращения трубной мельницы-15, сырьевой материал движется по всей ее длине, сушится и измельчается. В процессе обжига гипсового камня происходит его дегидратация с образованием бета полугидрата.
Далее, измельченный продукт обжига подается в проходной сепаратор-5, где выделяются наиболее крупные необожжённые частицы гипса и возвращаются затем обратно в мельницу на повто
stroivagon.ru
Технология производства строительного гипса
Введение
Основные понятия о минеральных вяжущих веществах, их значения для народного хозяйства. Существует значительное количество разнообразных вяжущих. Однако в строительстве применяется лишь часть их них. Их называют строительными вяжущими веществами.
Строительными минеральными вяжущими веществами называют порошковидные материалы, которые после смешивания с водой образуют массу, постепенно затвердевавшую и переходящую в камневидное состояние. Строительные материалы делят на две группы: неорганические (минеральные), главнейшие из которых — портландцемент и его разновидности, известь гипс и другие, и органические, из которых больше всего используют продукты перегонки нефти и каменного угля (битумы, дегти), называемые черными вяжущими.
Строительные материалы сыграли большую роль в развитии культуры и техники. Без них невозможно было бы возведение зданий и сооружений. Одно из первых мест среди строительных материалов занимают вяжущие вещества, которые являются основой современного строительства.
Производство вяжущих веществ представляет собой комплекс химических и физико-механических воздействий на исходные материалы, осуществляемых в определенной последовательности.
Вяжущие вещества — основа современного строительства. Их широко применяют для изготовления штукатурных и кладочных растворов, а также разнообразных бетонов (тяжелых и легких). Из бетонов изготовляют все возможные строительные изделия и конструкции, в том числе армирование сталью (железобетонные, армосиликатные и др.) Из бетонов на вяжущих веществах возводят отдельные части зданий и целые сооружения (мосты, плотины и т.п.).
Примерно за 4-3 тыс. лет до н.э. появились вяжущие вещества получаемые искусственно – путем обжига. Первым из них был – строительный гипс, получаемый обжигом гипсового камня при сравнительно невысокой температуре 413-463К.
Гипсовыми вяжущими веществами называют порошковидные материалы, состоящие из полуводного гипса и получаемое обычно тепловой обработкой двуводного гипса в пределах 105-2000 С.Гипс по условиям тепловой обработки, скорости схватывания и твердения делят на 2 группы: низкообжиговые и высокообжиговые.
Низкообжиговые вяжущие быстро схватываются и твердеют; состоят они главным образом из полуводного гипса, полученного тепловой обработкой гипсового камня при t 383-4530 С. К ним относятся строительный (алебастр) формовочный высокопрочный (технический) и медицинский гипс, а также гипсовые вяжущие из гипсосодержащих материалов.
Высокообжиговые медленно схватываются и твердеют, состоят преимущественно из безводного сульфата кальция, полученного обжигом при температуре 873-1173К. К ним относятся ангидритовое вяжущее (ангидритовый цемент), высокообжиговый гипс (эстрих- гипс) и отделочный гипсовый цемент.
По разнообразии. Объектов применение одно из первых мест среди вяжущих занимает гипс. Применение гипсовых материалов и изделий способствует экономии топлива, цемента, снижению трудоемкости и стоимости строительства. Гипс применяется в качестве штукатурного материала, для изготовления орнаментальных украшений и при отделке зданий. Кроме того, используют для изготовления гипсобетонных прокатных перегородок и перегородочных плит.
К сожалению, производство и применение гипсовых изделий в строительной промышленности Кыргызстана по сравнению с другими странами – дальнего и ближнего зарубежья находится еще в самом зачаточном состоянии. В Кыргызстане имеется колоссальный запас гипсового камня, но они почти не используются в промышленности строительных материалов.
Номенклатура
Гипсовые вяжущие (ГОСТ 125-79, СТСЭВ 826-77) получают термической обработкой гипсового сырья до полугидрата сульфата кальция. Применяют для изготовления строительных изделий всех видов и при производстве строительных работ.
Марку гипсовых вяжущих от Г-2 до Г-25 характеризуют, по прочности при сжатии соответствующих марок меняется в пределах 2….25МПа, а при изгибе 1,2….8МПА.
В зависимости от сроков схватывания различают вяжущие быстротвердеющие (А), нормальнотвердеющие (В), с началом схватывания соответственно не ранее 2, 6 и 20 мин и концом не позднее 15, 30.
В зависимости от степени помола различают вяжущие грубого (I), среднего (II), тонкого помола (III) с максимальным остатком на сите с размером ячеек 02 мм, соответственно не более 23,14 и 2%.
Марки гипса Г-2….Г-7, всех сроков твердения и степеней помола предназначены для изготовления гипсовых строительных изделий всех видов.
Обоснование способа производства
Обжиг гипса во вращающихся печах . Вращающиеся печи, применяемые для обжига гипса, представляют собой наклонный металлический барабан, по которому медленно передвигается предварительно раздробленный гипсовый камень. Гипс обжигается топочными газами, образующимися при сжигании различных видов топлива (твердого, жидкого и газообразного) в топочных устройствах при печах.
Наибольшее распространение получили печи типа сушильных барабанов, в которых обогрев производится газами, проходящими внутри барабана. Могут применяться печи и с обогревом топочными газами наружной поверхности барабана, а также печи, в которых топочные газы сначала омываются барабан снаружи, а затем проходят через его внутреннюю полость. В печах с непосредственным обогревом материала между топкой и рабочей полостью барабана часто помещают смесительную камеру, в которой температура выходящих из топки газов понижается за счет смешения с холодным воздухом. Скорость движения газов в барабане составляет 1-2м/с, при большей скорости значительно увеличивается унос мелких частиц гипса. За барабаном устанавливаются обеспыливающие устройства и дымосос.
Ту часть барабана, в которой наиболее интенсивно протекает дегидратация, иногда расширяют, вследствие чего в этой зоне печи замедляется движение, как газового потока, так и материала, обладающего большой подвижностью, особенно в период «кипения». Для замедления диафрагмы. В рабочей полости барабана укреплены приспособление для перемещения гипса в процессе обжига, что обеспечивает равномерную его дегидратацию. Перемещение устройства создаются также большую поверхность соприкосновения обжигаемого материала с горячим газовым потоком. Отсутствие перемешивающих устройств ухудшают условия дегидратации.
Обжиг гипс во вращающихся печах может производиться по методу прямотока и противотока. По первому методу гипсовый камень подвергают воздействию высоких температур в начале обжига, а по второму — в конце обжига. Температура входящих в печь газов при прямотоке 1223-1273К, а при противотоке-1023-1073К. температура выходящих из печи газов при прямотоке 443-493К, а при противотоке-373-383К. При прямоточном методе материал не пережигается, но повышается расход топлива, так как в зоне максимальных температур протекают лишь подготовительные процессы- подогрев и сушка материала, дегидратация же происходит в зоне более низких температур. Предпочтительнее применять вращающиеся печи, работающие по принципу противотока.
Выходящий из печи горячий материал целесообразно направлять в бункера томления или подвергать горячему помолу. Последний особенно эффективно улучшает свойства гипса, так как быстрее происходит выравнивание минерального состава конечного продукта за счет дегидратации оставшегося двугидрата и связывания освобождающейся воды растворимым ангидритом.
Для получения строительного гипса высоко качества во вращающихся барабанах следует обжигать дробленный гипсовый камень с однородным размером частиц. В противном случае происходит неравномерный обжиг материала: мелкие зерна пережигаются вплоть до образования нерастворимого ангидрита, а внутренняя часть крупных зерен остается в виде неразложившегося двугидрата. В практических условиях загружают в печь материал с размером зерен до 0,035м, а зерна размером менее 0,01м отсеивают. Пылевидные частицы образуются в печах вследствие истирания материала при движении в процессе дегидратации, особенно при обжиге более мягких пород гипсового камня. Эти частицы уносятся потоком газов и быстрее проходят через печь, однако часть из них успевает все же полностью дегидратироваться. Желательно обжигать раздельно фракции 0,01-0,2 и 0,02-0,035м. Отсеянную фракцию с размером зерен менее 0,01м можно использовать после дополнительного помола для производства строительного гипса и варочных котлах или для получения сыромолотого гипса, применяемого для гипсования солонцовых почв. Длина применяемых для обжига гипса вращающихся печей 8-14м, диаметр 1,6 и 2,2м; производительность их соответственно 5-15т/ч; угол наклона барабанов 3-50 ; число оборотов 2-5об/мин; расход условного топлива 45-60кг на 1т готового продукта.
Вращающиеся печи являются непрерывно действующими установками, обусловливающими компактную технологическую схему. Во вращающихся печах обжигается дробленый гипсовый камень более крупных размеров, чем в варочных котлах, где он хуже перемешивается. Тем не менее, во вращающихся печах при тщательной подготовке материала, правильно подобранных оптимальных условиях обжига и последующего помола обожженного продукта практически можно получить строительный гипс высокого качества. На рис. 1 представлена технологическая схема производства строительного гипса с обжигом во вращающихся печах.
Рис. 1
Совмещенный помол и обжиг гипса. Двойная термическая обработка (сушка и варка) даже при совмещении процесса сушки и помола усложняет производственный процесс. В мельнице наряду с помолом и сушкой гипс в некоторой степени дегидратируется. Однако содержание гидратной воды остается еще высоким, вследствие чего требуется доваривать гипс в варочном котле для полного превращения его в полугидрат. Известны схемы производства строительного гипса, при которых окончательная дегидратация гипса до полугидрата производится в самом помольном аппарате. В этом случае температура поступающих в мельницу дымовых газов должна быть более высокой 873-1073К, чем просто при совместной сушке и помоле. Температура же отходящих из установки газов 382-423К. расход условного топлива 40-50кг на 1т строительного гипса. Установки для обжига в процессе помола отличаются компактностью.
mirznanii.com
2.3. Технология производства гипсовых вяжущих
Технологический процесс производства гипсовых вяжущих состоит в измельчении гипсового камня (дроблении и помоле) и тепловой обработке (дегидратации). Степень измельчения гипсового камня перед тепловой обработкой определяется типом теплового аппарата. В запарочные аппараты материал подают кусками размером до 400 мм, во вращающиеся печи—10— 35 мм, а в варочные котлы — в виде порошка. Используемые технологические схемы получения гипсовых вяжущих отличаются одна от другой видом и последовательностью основных операций. Наиболее распространенные технологические схемы условно можно представить следующим образом:
Дробление помол варка
Дробление сушка помол варка
Дробление сушка + помол варка
Дробление помол варка помол
Дробление сушка + помол варка помол
Дробление обжиг помол
Дробление обжиг + помол
Дробление запаривание помол
Первые пять схем используют при производстве гипсовых вяжущих в гипсоварочных котлах, тепловая обработка материала в которых носит название варки. Наиболее простая схема 1, но ее применение возможно лишь при сухом сырье. Если влажность сырья превышает 1 %, то перед помолом его необходимо сушить (схема 2). Целесообразно совмещение этих двух операций в одном технологическом аппарате (схема 3). Для улучшения качества продукции желателен вторичный помол полуводного гипса, выходящего из варочных котлов (схемы 4 и 5). Схему 6 используют как при производстве высокообжиговых, так и низкообжиговых гипсовых вяжущих во вращающихся печах, а схему 7 — в аппаратах совмещенного помола и обжига. Схема 8 предназначена для получения гипса повышенной прочности на основе α-модификации полугидрата. Выбор технологической схемы и типа аппарата для тепловой обработки зависит от масштабов производства, свойств сырья, требуемого качества продукции и других факторов.
Производство гипсовых вяжущих в гипсоварочных котлах получило наибольшее распространение (рисунок). Гипсовый камень предварительно дробится в щековой дробилке. Для той же цели могут использоваться молотковые и конусные дробилки. Дробленый материал поступает на помол в шахтную мельницу (или же аэробильную, ролико-маятниковую, шаровую).
Широко применяется шахтная молотковая мельница. Она состоит из размольной камеры и быстровращающегося ротора с дисками, на которых шарнирно укреплены молотки. Над мельницей находится прямоугольная металлическая шахта высотой 9—14 м, а на высоте 1 м от размольной камеры — течка, через которую в мельницу поступает предварительно дробленое сырье. Попадая на вращающийся ротор, оно измельчается в тонкий порошок. В шахтной мельнице может одновременно осуществляться помол и сушка сырья. Это особенно ценно, так как наличие влаги затрудняет помол гипсового камня, а предварительная сушка сырья в отдельном аппарате, например, сушильном барабане, усложняет технологическую схему.
Источником теплоты для сушки материала в шахтных мельницах в большинстве случаев являются отработанные в варочных котлах газы с температурой 350— 500 °С и выше. Непрерывно поступая под ротор мельницы, они уносят с собой продукт помола вверх в шахту, где он подсушивается. При этом процесс саморегулируется— более крупные зерна выпадают из газового потока и снова поступают в мельницу, где повторно измельчаются, а мелкие уносятся в пылеулавливающие устройства. Обычно скорость горячих газов в шахте составляет 4—б м/с. При ее уменьшении помол становится более тонким, при увеличении —- более грубым. Тонкодисперсные частицы, уловленные системой пылеочистки, поступают в гипсоварочный котел.
Гипсоварочный котел — цилиндр с вогнутым сферическим днищем, изготовленный из жароупорной стали и обмурованный кирпичной кладкой. Под котлом находится топка, сводом которой служит днище котла. Внутри котла попарно один над другим проходят металлические жаровые трубы. Продукты сгорания топлива омывают днище котла, затем, проходя по кольцевым каналам, обогревают его боковые стенки, попадая в жаровые трубы, нагревают их, а затем подаются в шахтную мельницу или удаляются через дымовую трубу. В результате обеспечиваются равномерный обогрев материала и полное использование теплоты дымовых газов. Материал в котле перемешивается вертикальным валом с верхней и нижней мешалками.
Предварительно разогретый котел загружают сверху через отверстие в крышке при непрерывной работе мешалки. После загрузки первой порции ожидают признаков «кипения», вызванного выделением паров воды. Затем продолжают постепенно засыпку гипсового порошка и следят, чтобы гипс все время находился в кипящем состоянии.
Продолжительность дегидратации гипсового камня в котлах зависит от их емкости, тонкости помола порошка и т. д. Она колеблется от 50 мин до 2,5 ч. В котлах, например, объемом 12 м3 температура сырья быстро поднимается с 80 до 119°С. Затем, несмотря на поступление теплоты, некоторое время она сохраняется постоянной. Это соответствует периоду выделения из гипса кристаллизационной воды и превращения ее в пар. Бурное кипение материала требует большого расхода теплоты. По мере уменьшения в порошке количества двугидрата теплота начинает расходоваться не только на физико-химические процессы, но и на нагрев образовавшегося полугидрата. Слишком высокая температура (170—180°С) может вызвать вторичное его кипение, обусловленное дегидратацией полуводного гипса. При этом возможна осадка материала, что затрудняет выгрузку его из котла.
По окончании варки материал выгружают в бункер выдерживания для постепенного охлаждения в течение 20—30 мин. Объем бункера обычно вдвое больше объема котла. Выдерживание улучшает качество вяжущего. Оставшийся двугидрат за счет теплоты выгруженного материала переходит в полугидрат. Одновременно под действием паров воды растворимый ангидрит гидратируется до полугидрата. В результате выравнивается состав продукта, снижается его водопотребность и повышается качество.
Получаемый в варочных котлах продукт в основном состоит из -полугидрата. Однако содержание в нем α-полугидрата можно повысить подачей в варочный котел небольших количеств солей, например 0,1 % NaCl. Раствор соли снижает упругость пара у поверхности зерен, в итоге ускоряется процесс варки и повышается качество продукта. Содержание α -полугидрата повышается также в котлах большой вместимости, так как в них растет высота слоя материала и затрудняется удаление поды.
Производительность наиболее перспективного варочного котла СМЛ-158 вместимостью 15,2 м3 составляет 8,5 т/ч. Удельный расход условного топлива на 1 т гипса составляет 52 кг при использовании твердого топлива и 40 кг при использовании газа и мазута. Удельный расход электроэнергии 105—110 МДж.
На многих заводах процесс варки гипса в котлах автоматизирован. Загрузка котла сырьем до определенного уровня, поддержание заданной температуры гипса в конце варки, перемещение выгрузочного шибера выполняются соответствующими исполнительными механизмами. В результате сокращаются затраты ручного труда, уменьшается вероятность перегрева обечаек и днищ котлов, стабилизируется процесс варки и повышается качество продукции.
Заполнение котла гипсом контролируется сигнализатором уровня. Сигнал датчика передается на электродвигатель шнека-загрузчика и отключает его. Режим варки и конечная температура гипса контролируются манометрическим термометром или термометром сопротивления. При достижении заданной температуры гипса подается сигнал на включение электродвигателя привода шибера котла. Включение двигателя для работы по закрытию шибера происходит с помощью реле времени. Реле настраивают на подбираемое опытным путем время, достаточное для полного опорожнения котла. После закрытия шибера подается сигнал на включение шнека-загрузчика котла, и цикл повторяется.
Варочные котлы отличаются простотой обслуживания, удобством регулирования и контроля режима обжига. Обрабатываемый в них материал с пламенем и дымовыми газами не соприкасается и не загрязняется золой. Однако варочным котлам присущи и некоторые недостатки: периодичность работы, быстрая изнашиваемость днища и обечаек котлов, сложность улавливания гипсовой пыли.
Дальнейшим усовершенствованием гипсоварочных котлов является перевод их с периодического режима работы на непрерывный. Тонкомолотый гипс загружают в котел непрерывно ниже уровня поверхности обрабатываемого материала. Образующийся в процессе варки полугидрат имеет меньшую плотность, поэтому он вытесняется из нижней зоны непрерывно поступающим в котел сырым гипсовым порошком. Поднимаясь, полугидрат доходит до окна в боковой стенке котла и самотеком поступает в бункер выдерживания. Производительность таких котлов в 2—3 раза выше, чем котлов периодического действия. Однако конструктивная сложность снижает надежность их работы и ограничивает распространение.
Производство гипса во вращающихся печах достаточно широко распространено в отечественной и зарубежной практике. Вращающаяся печь — наклонный металлический барабан, по которому медленно перемещается дробленый гипсовый камень с размером кусков до 35 мм. Для обжига гипса на полугидрат используют печи длиной до 8—14 м и диаметром 1,6—2,2 м. Топливо сжигают в специальной топке. Между топкой и печью часто помещают смесительную камеру, в которой во избежание пережога продукта температура выходящих из топки газов несколько понижается за счет смешения их с холодным воздухом. Скорость движения горячих газов в печи 1—2 м/с. Превышение этих пределов вызывает сильный унос мелких частиц полугидрата.
Обжиг производят по методу как прямотока, так и противотока. Температура поступающих в печь горячих газов при прямотоке должна быть 950—1000 °С, при противотоке — 750—800 °С. При прямотоке достигается более равномерный обжиг гипса и, следовательно, лучшее его качество. При этом происходит своеобразное саморегулирование процесса обжига: мелкие, быстро дегидратирующиеся частицы транспортируются газами в холодный конец печи тем быстрее, чем меньше их размер и больше скорость газов. Однако при прямотоке выше расход топлива.
При обжиге во вращающихся печах необходимо создавать однородность размеров кусков сырья, поступающего на обжиг, и их сохранность при тепловой обработке. В зависимости от времени нахождения материала в печи определяют предельно допустимый размер кусков. Так, куски размером 40 мм должны находиться в печи 1,5—2 ч. Выходящий из ночи горячий материал направляют в бункера выдерживания или сразу подвергают помолу.
Производство гипсовых вяжущих во вращающихся печах может быть интенсифицировано улучшением теплообмена между теплоносителем и гипсовым камнем и увеличением коэффициента загрузки обжиговых агрегатов. Такая модернизация позволяет увеличить производительность печей, улучшить режим обжига гипсового камня, повысить однородность состава готового продукта и его качество, а также снизить затраты топлива и потери теплоты с отходящими газами.
Производительность вращающейся печи зависит от объема внутренней части, угла наклона и частоты вращения печи, температуры и скорости движения газов, качества сырья и других факторов и составляет 125— 250 кг обожженного гипса в час на 1 м3 объема печи. Производство гипсовых вяжущих во вращающихся печах позволяет выпускать более дешевый гипс при меньших капитальных затратах. Полученный гипс имеет более высокие прочностные показатели, чем при использовании варочных котлов. Он отличается пониженной водопотребностью (48—57%), что позволяет на 20—25 % снизить его расход при приготовлении растворов и бетонов. Непрерывно действующие вращающиеся печи обеспечивают компактность технологической схемы, позволяют автоматизировать процесс. Однако их недостатком являются трудность регулирования процесса, необходимость обеспечения стабильности технологических параметров, а также повышенный пылеунос.
Двухступенчатая тепловая обработка (сушка и варка) усложняет производственный процесс. Хотя при сушке гипсовый камень частично дегидратируется, содержание гидратной воды в сырье остается высоким, и для перевода в полугидрат его необходимо доваривать в варочном котле.
В последние годы получил распространение совмещенный помол и обжиг гипсовых вяжущих, когда тепловая обработка происходит в самом помольном агрегате в результате интенсивного теплообмена между горячими газами и измельчаемым материалом. У мельницы дополнительно сооружается предтопок, в котором сжигается топливо и в мельницу поступают газы с температурой 700—800°С. Расход условного топлива при этом составляет 40—50 кг на 1 т вяжущего. Мельницы снабжают сепараторами проходного тина, после которых измельченный и дегидратированный продукт поступает в пылеуловители.
Схемы производства при совмещенном помоле и обжиге отличаются главным образом используемым типом мельниц (шахтные, шаровые, аэробильные), а также тем, что в одних случаях мельницы работают с однократным использованием теплоносителя, а в других— с возвратом в мельницу части газов после пылеочистки. Применение рециркуляции газов повышает расход электроэнергии, но снижает расход топлива. Один из вариантов производства гипсовых вяжущих при совмещении их помола и обжига представлен на рисунке.
Гипсовый камень проходит две стадии дробления в щековой и молотковой дробилке и в виде частиц размером 10—15 мм поступает в шаровую мельницу, куда также подаются дымовые газы из предтопка. Дегидратированный в процессе измельчения материал выносится газовым потоком в сепаратор, где из него отделяются крупные частицы, и возвращаются в мельницу. Тонкие фракции гипса улавливаются в пылеосадителях, после чего очищенные газы выбрасываются и атмосферу. Производственный цикл при получении гипсовых вяжущих в мельницах совмещенного помола и обжига — самый короткий, и число агрегатов — минимальное. Достоинство таких установок— их компактность и высокая производительность. Однако вследствие кратковременности воздействия газов наиболее крупные частицы не успевают полностью дегидратироваться, а часть мелких частиц пережигается, в результате полученное вяжущее быстро схватывается и имеет пониженную прочность.
Получение гипсовых вяжущих α-модификации в среде, насыщенной паром. Тепловая обработка гипсового камня в варочных котлах, вращающихся печах и мельницах происходит при атмосферном давлении; кристаллизационная вода удаляется из гипсового камня в виде пара и в результате продукт тепловой обработки состоит в основном из -CaSO40,5H2O. Для получения гипса повышенной прочности, состоящего в основном из α-полугидрата, необходимо создать такие условия, чтобы кристаллизационная вода удалялась из двуводного гипса в капельно-жидком состоянии. Известны два основных способа получения гипса повышенной прочности:
1) автоклавный, основанный на обезвоживании гипсового камня в герметических аппаратах в среде насыщенного пара под давлением выше атмосферного;
2) тепловая обработка в жидких средах, т. е. обезвоживание гипса кипячением в водных растворах некоторых солей.
Автоклавный способ получения гипсовых вяжущих может быть реализован в различных аппаратах. Запарочный аппарат представляет собой герметичный вертикальный металлический резервуар с люками и затворами для загрузки и выгрузки материала. В нижней части аппарата имеется обезвоживающее сито, через которое стекает конденсат, а при продувании отводятся топочные газы. Пар подается в аппарат сверху в перфорированную трубу, размещенную в центре. Запарник загружают гипсовым камнем размером 15—40 мм и обрабатывают его насыщенным паром под давлением 0,23 МП а при 114°С в течение 5—8 ч. Затем в том же аппарате материал сушат газами с температурой 120—160°С в течение 3—5 ч. Высушенный материал размалывают. Недостатки этого способа: неравномерность сушки, высокий расход топлива и энергии.
Получило распространение также производство высокопрочных гипсовых вяжущих способом «самозапаривания», при котором избыточное давление создается за счет испарения из гипсового камня части гидратной воды. Дробленый гипсовый камень загружают в герметически закрываемый вращающийся «самозапарник», куда подают топочные газы с температурой около 600°С. Проходя по находящимся внутри аппарата трубам, эти газы нагревают материал. В результате двуводный гипс разлагается, и выделяющаяся вода создает в аппарате избыточное давление. Дегидратация гипса протекает в паровой среде под давлением 0,23 МПа в течение 5—5,5 ч. Излишки пара периодически сбрасываются. После запаривания материал в этом же. аппарате сушат, снижая для этого давление до 0,13 МПа в течение 1,5 ч, а затем до атмосферного. Общая продолжительность цикла 12—14 ч. Полученный продукт измельчают в мельницах.
Известно производство гипса повышенной прочности запариванием в автоклаве гипсового камня размером 300—400 мм (70 % общего количества камня) и 100— 250 мм (остальные 30%). Запаривание осуществляют в течение 6 ч, доводя давление пара в автоклаве до 0,6 МПа. По окончании запаривания давление пара в течение 1,5 ч снижают до атмосферного. Затем гипсовый камень подвергают сушке при закрытых крышках автоклавов 7 ч, при открытых крышках 10 ч и охлаждают 4 ч. Общий цикл запаривания и сушки гипсового камня составляет 28—30 ч. Выгруженный из автоклава продукт размалывают. Гипсовые вяжущие, получаемые в среде, насыщенной паром, отличаются большей мономинеральностью структуры, более крупной и правильной кристаллизацией, меньшей водопотребностью и повышенной прочностью. Поэтому в практике их называют высокопрочным гипсом.
Получение гипсовых вяжущих варкой в жидких средах. Относительно низкая температура перехода двуводного гипса в полуводный дает возможность получить высокопрочные гипсовые вяжущие тепловой обработкой порошка двугидрата в открытых емкостях в растворах некоторых солей, поскольку температура кипения растворов при атмосферном давлении выше температуры дегидратации гипса. В жидкой среде происходит интенсивная передача теплоты от солевого раствора к частицам гипса, что ускоряет химические реакции. Получаемый продукт однороден по составу и состоит преимущественно из α-полугидрата. В качестве жидких сред применяют водные растворы солей СаС12, MgCl2, MgSO4, Na2CО3, NaCl и др. Продолжительность варки в зависимости от вида раствора и его концентрации составляет 45—90 мин. Полученный таким образом полуводный гипс отцеживают или отделяют от жидкой среды центрифугированием, промывают до полного удаления солей и сушат при 70—80 °С, затем материал размалывают в порошок.
Возможно также получение гипсового вяжущего повышенной прочности кипячением молотого гипсового камня в воде с добавкой 1,5—3 % поверхностно-активных веществ (сульфитно-дрожжевой бражки, асидола, мылонафта). Температура кипения такого раствора 128—132 °С, время варки 70—90 мин.
Варка в жидких средах позволяет получить продукт высокого качества и сократить длительность производственного цикла, однако необходимость отделения гипса от солевого раствора и дополнительная операция сушки усложняют технологический процесс.
Производство гипсовых вяжущих из отходов химической промышленности. Рост объемов гипсосодержащих отходов химической промышленности повышает актуальность их переработки в гипсовые вяжущие. Наиболее крупнотоннажный вид отходов — фосфогипс. Переработка его на гипсовые вяжущие усложняется наличием в нем до 5—7 % примесей фосфора, фтора, кремния и долей процента редкоземельных элементов, главным образом лантанидов, а также повышенной влажностью. Наиболее отрицательно влияют фосфаты, соединения фтора и редкоземельных элементов. Они или входят в кристаллическую решетку полугидрата, или образуют на поверхности его кристаллов труднорастворимые пленки, тормозящие гидратацию вяжущего. Поэтому гипсовое вяжущее высокого качества -модификации может быть получено из фосфогипса только после многократной предварительной отмывки водорастворимых и нейтрализации остальных примесей.
Если фосфогипс содержит более 0,5 % водорастворимого Р2О5, то предварительная промывка необходима и при переработке его в α-модификацию полугидрата. Если же содержание примесей меньше, то пульпа с соотношением жидкое : твердое 1 подается в автоклав, где производится гидротермальная обработка при температуре 150—175°С и давлении 0,4—0,7 МПа. Дегидратация фосфогипса и последующая кристаллизация α-полугидрата сопровождаются удалением из продукта примесей, входящих в кристаллическую решетку CaSO4-2H2O. После гидротермальной обработки твердая фаза α-полугидрата отделяется на вакуум-фильтре. Корж с влажностью около 10 % сушится в сушильном барабане и размалывается в мельнице. Разработана также непрерывная технология гидротермальной переработки фосфогипса в высокопрочное гипсовое вяжущее или супергипс (α-полугидрат) (рисунок), при которой вредные примеси во время перекристаллизации гипса связываются дополнительными компонентами, вводимыми в технологический процесс, а размеры кристаллов полугидрата регулируются органическими и неорганическими добавками.
Фосфогипс подается в репульпатор, где смешивается с водой и добавкой регулятора кристаллизации до соотношения Ж:Т = 1 с учетом влажности фосфогипса. Пульпа перекачивается насосом в расходную емкость, где нагревается до 60—70 °С. Отдельно готовят комбинированную добавку, смешивая в специальной емкости с пропеллерной мешалкой портландцемент и активную минеральную добавку с водой до соотношения Ж:Т = 4—5:1. Комбинированная добавка и пульпа фосфогипса насосом одновременно накачиваются в автоклав, где происходит гидротермальная обработка в течение 35—45 мин при давлении 0,4—0,7 МПа и температуре 150—175°С. В процессе ее суспензия непрерывно перемешивается мешалкой. Из автоклава водно-полугидратная пульпа подается в холодильник, а после охлаждения до 98—100°С — на вакуум-фильтр. Из пульпы отжимается вода, и остается лепешка влажностью 10—15%. Она поступает в сушильный барабан, где сушится топливными газами при температуре 400— 500 °С. Материал собирается в бункере, из которого потом направляется в шаровую или вибрационную мельницу.
studfile.net
«Производство строительного гипса» — Сандинский гипсоперерабатывающий комбинат
Производство строительного гипса
Компания «Тобис» занимается разработкой и изготовлением оборудования для производства строительного гипса с 2005 г. Первая установка производства строительного гипса марок Г4-Г7 была запущена в Ульяновской области осенью 2006 г. В дальнейшем технологическая схема установки и оборудование постоянно совершенствовалась и модернизировалась. Запуск установки производства строительного гипса в Казахстане и в Новосибирске в 2007 г. показал, что направления, по которым проводилась модернизация, были выбраны правильно.
В декабре 2008 г. на ООО «Сандинский гипсоперерабатывающий комбинат» (ООО «СГПК») (Республика Башкортостан) введена в эксплуатацию новая установка производства строительного гипса. Ее производительность в периодическом режиме составляет 120 т/сут; в непрерывном режиме до 170 т/сут.
Компания ООО «САНДИН» с 2003 г. является одним из крупнейших поставщиков гипсового камня для предприятий строительной индустрии, цементной промышленности и сельского хозяйства. В 2007 г. было принято решение о необходимости запуска предприятия для производства гипсового порошка.
В декабре 2008 г. производство было запущено. В настоящее время объемы выпуска гипсового порошка на ООО «СГПК» растут, отрабатываются технологические режимы выпуска продукции для производителей сухих строительных смесей, гипсокартона, пазогребневых блоков. В конце 2009 г. планируется запуск второй технологической установки производства строительного
Технология производства
Технология производства строительного гипса на базе гипсоварочных котлов состоит из трех основных переделов: дробления исходного сырья; помола и сушки: варки гипсовой мучки в гипсоварочных котлах.
Технологический передел № 1
Гипсовый камень фракции 60-300 мм поступает с помощью фронтального (грейферного) погрузчика и транспортной системы, состоящей из питателей и транспортеров, в щековоую дробилку где дробится до фракции 20-60 мм. Размер фракции регулируется размерам выходной щели дробилки. Для изменения производительности питатель снабжен peгулируемым приводом и шиберной заслонкой.
Технологический передел № 2
Измельченный материал после прохождения железоотделителя подается в молотковоую аксиальную мельницу, предназначенную для тонкого помола и одновременного подсушивания гипсового щебня, так как в мельнице материал измельчается и нагревается.
Молотковые аксиальные мельницы относятся к группе быстроходных молотковых размольных машин и состоят из корпуса, ротора с билами, привода и встроенною сепаратора. Подача щебня в мельницу осуществляется по направлению вращения ротора. В результате ударов бил щебень измельчается в порошок. Тонкость помола материала зависит от скорости подачи, объема вентилирующего агента и угла установки лопаток встроенного сепаратора.
В качестве теплоносителя и вентилирующего агента используются отходящие дымовые газы гипсоварочных котлов. Температура дымовых газов при входе в мельницу в зависимости от выбранного теплового режима обжига гипса в котлах может колебаться от 200 до 500°С.
Измельченный, высушенный и отсепарированный до остатка не более 2-10% на сите № 02 гипсопорошок осаждения.
Технологический передел № 3
Варка гипсового порошка происходит в гипсоварочном котле топочными газами с температурой данным футеровкой котла и жаровым трубам. Теплоносителем в этих проходах служат продукты сгорания природного газа (жидкого светлого топлива) в специальной топке. Гипс в варочном котле непосредственно не соприкасается с дымовыми газами, его температура составляет 100-150°С. В процессе варки он интенсивно перемешивается и равномерно нагревается, что обеспечивает получение однородного продукта высокого качества.
Сжигание газообразного (жидкого) топлива происходит в печи обогрева.
Гипсоварочный котел представляет собой вертикальный стальной барабан, оборудованный мешалкой и закрытый сверху крышкой, снабженный патрубками для загрузки порошка и отвода смеси пара с частицами гипса.
Процесс варки гипса сопровождается интенсивным выделением кристаллизационной воды. В этот периоднаблюдается кипение гипсового порошка. Из патрубка, расположенного на крышке котла, интенсивно выделяется смесь пара с частицами гипса. Дымовые газы с температурой 200-500°С, не соприкасаясь с материалом, выносятся в молотковую мельницу. Разрежение в дымовых каналах котлов создается за счет дымососа, который одновременно является тяговым агрегатом молотковой сепараторной мельницы. Пары воды и частицы гипса, образованные при дегидратации гипса в котле, а также избыточная пылевоздушная смесь бункера томления удаляются из котла. Полученный в гипсоварочном котле полуводный гипс выгружается в бункер томления.
печах, гипс после гипсоварочных котлов выхолит стабильного качества, с высокими прочностными характеристиками.
Физико-химические процессы твердения гипса согласно теории академика А.А. Байкова протекают следующим образом. Полуводный гипс, частично растворяясь в воде, переходит в менее растворимый двуводный гипс и создаст перенасыщенный раствор. Ввиду недостатка воды весь гипс перейти в раствор не может и, гидратируясь, выделяется в виде мелкодисперсной массы, подобной коллоиду. Образовавшийся коллоид быстро кристаллизуется. Выделяющиеся игольчатые кристаллы двуводного гипса, переплетаясь между собой, образуют прочный кристаллический сросток. Процесс коллоидизации и кристаллизации продолжается до тех пор, пока весь полуводный гипс не перейдет в двуводный.
Нарастание прочности гипса происходит вследствие процесса сращивания кристаллов двуводного гипса. Происходящее при высыхании гипсового изделия выпадение гипса, находящегося в растворе, способствует сращиванию игольчатых кристаллов двугидрата.
Принципиальная технологическая схема производства строительного гипса с использованием гипсоварочных котлов и молотковых мельниц не является новой, но компактная технологическая линия, снабженная современной автоматизированной системой управления, позволяет обеспечить выпуск строительного гипса постоянной высокой марки, обеспечить контроль режимов варки и гибкое изменение параметров гипса в зависимости от требований.
Автоматизированная система управления установкой по производству строительного гипса (далее система) предназначена для обеспечения работы всех элементов технологического оборудования в автоматическом и ручном режимах. Система представляет собой комплекс аппаратных и программных средств. совместно выполняющих задачу по управлению техно-бытъ условно разделена на три уровня.
Нижний (полевой) уровень представлен датчиками и исполнительными механизмами. В качестве датчиков в сигнализаторы уровня, приборы контроля тока двигателя и дополнительные контакты, сигнализирующие о состоянии и режиме работы двигателей.
Исполнительными механизмами системы являются двигатели с контакторами для прямого пуска, двигатели с переменной частотой вращения, управляемые частотно-регулируемыми приводами, и электромеханические позиционеры для управления дроссельными заслонками.
На среднем уровне система представлена программируемым логическим контроллером (ПЛК) с модулями ввода-вывода аналоговых и дискретных сигналов. ПЛК отвечает за прием сигналов от датчиков и выдачу управляющих сигналов на исполнительные механизмы в соответствии с заложенной в него программой.
На верхнем уровне система представлена устройством человеко-машинного интерфейса. Это компьютер, соединенный с контроллером промышленной сетью и с установленным на нем специализированным программным обеспечением.
Практически все оборудование и ПО, применяемое для системы автоматизации, произведено компанией Siemens AG.
Компоновочные и технологические решения
Все технологическое оборудование смонтировано па металлической строительной этажерке, размеры которой в плане составляют 15×10 м. Максимальная высота оборудования 16 м. Технологическая установка монтируется в крытом производственном помещении и не требует многоярусных железобетонных строительных конструкций.
Для уменьшения мест погрузки и зависания гипсового материала компоновка технологической установки выполнена таким образом, чтобы количество и длина транспортеров и подъемников были минимальны. В качестве транспортеров используются винтовые конвейеры длиной не более 5 м и один ленточный элеватор. Для уменьшения мест отложения гипсового продукта внутри газоходов и воздуховодов длина, количество и число поворотов выбрано минимальным.
В качестве основного агрегата обжига в технологической установке используется жаротрубный гипсоварочный котел. Жаровые трубы расположены в три яруса по две на каждом ярусе. Полный объем котла 25 м3, рабочий объем 20 м3. Скорость вращения мешалки 20 об/мин. Увеличенный объем котла по сравнению с применяемыми па многих российских предприятиях обжиговыми агрегатами позволяет увеличить производительность установки, производить варку гипсового продукта как в периодическом, так и в непрерывном ре-Гипсоварочный котел монтируется на строительной этажерке за верхнюю часть. Он не опирается днищем на металлические опоры и футеровку котла, что позволяет облегчить обслуживание днища и футеровки.
Для помола гипсовой щебенки применяется молотковая мельница с диаметром ротора 1300 мм и длиной 1300 мм. Для улучшения вентиляции мельницы и соответственно увеличения ее производительности по гипсовому продукту топочные газы подводятся к мельнице с боковых сторон аксиально сверху вниз. Гипсовая щебенка подается тангенциально.
Для аспирации мельницы применяется двухступенчатая система очистки — с помощью циклонов и рукавных фильтров. Пары гипса, образованные при его дегидратации в гипсоварочном котле, не направляются в общую аспирационную систему, а удаляются собственным вентилятором после обеспыливания в рукавном фильтре. Парогазовый факт выполняется коротким, не более 2 м, для уменьшения возможности отложения материала на входе в рукавный фильтр. Регенерация рукавного фильтра осуществляется с помощью обратной продувки сжатым воздухом при отключении системой дух перед подачей в рукавный фильтр подогревается.
Для сжигания топлива используется горелка немецкой фирмы WETSHAUPT. Горелка имеет ряд преимуществ: компактна, надежна в эксплуатации, имеет свою систему управления, которую можно связать с контроллером системы автоматизации гипсоварочной линии. Это позволяет регулировать температуру топочных газов непосредственно с операторской стойки.
С 2007 г. большой опыт по варке гипса был накоплен ТОО «Гипсо Газ Синтез» (г. Текели, Республика Казахстан). За это время на комбинате перерабатывался гипс различных месторождений, в том числе синтетический, полученный при нейтрализации серной кислоты известняком.
За период промышленного освоения и эксплуатации на заводе перерабатывался: гипсовый камень месторождения Бурултау Жамбыльской области с содержанием основного вещества 72—76 мас. %; синтетический брикетированный гипс с содержанием основного вещества 76-82 мас. %; гипсовый камень одного из месторождений Узбекистана с содержанием основного вещества 90-96 мас. %.
Цикл дробления и измельчения обеспечил получение гипсовой муки около 70 % с остатком на сите № 02 не более 2%, около 30 % с остатком на сите № 02 не более 8 %. Варка производилась в периодическом режиме, время варки для всех сырьевых материалов в среднем составляло около 2 ч 15 мин со средней производительностью 6 т/ч, или 144 т/сут. Средняя температура выгрузки материала из гипсоварочного котла для жамбыльского гипса 125-135°С, для узбекского гипса 140-155°С, для синтетического гипса 135—145°С.
За время эксплуатации в среднем выпускался гипс марки Г5- 80%; ниже Г5 — 10%; выше Г5 — 10%.
По опыту работы установки производства строительного гипса на ООО «СГПК» можно отметить, что установка позволяет гибко регулировать технологию и получать на выходе продукт с нужными физико-химическими свойствами.При отработке технологического режима на установке был внедрен ряд инженерно-технических решений, который позволил оптимизировать затраты тепла и электроэнергии и уменьшить количество обслуживающего персонала. Специалистами ООО «СГПК» предложены определенные технологические решения, что должно привести к увеличению производительности в периодическом режиме до 150 т/сут.
Современные теплоизоляционные материалы, система аэрации помогают управлять точкой росы, что помогает избегать появления гидратированных комочков.
На установке ООО «СГПК» был опробован и запущен скребковый тарельчатый конвейер. Транспортировка готового продукта из-под бункера томления скребковым тарельчатым конвейером вместо пневмотранспорта дала экономию электроэнергии, а также, избежав соприкосновения горячего гипса с большим объемом воздуха, удалось повысить прочностные качества продукта.
При отладке системы автоматизации были определены оптимальные места установки всех датчиков (температуры, уровня, давления). Оператор руководствуется более точными данными, что позволяет своевременно реагировать на изменения в технологическом процессе.
Температурные показания в гипсоварочном котле снимаются трехзонным датчиком, в связи с чем точность данных колеблется в пределах ±1°. На данном этапе ведутся совместные работы конструкторов ООО «Тобис» и инженеров ООО «СГПК» над системой помола гипсового камня с целью увеличения производительности помола гипсового камня на мельнице до 12 т/ч.
Система фильтрации гипсоварочного котла очищает отходящие пары от пыли до требуемого уровня по существующим санитарным нормам, а уловленная пыль возвращается обратно в технологический процесс, благодаря чему практически нет выбросов в окружающую среду и технологических потерь материала.
На основании вышеизложенного можно сделать вывод, что данная производственная линия более совершенна по сравнению с другими аналогичными установками по производству гипсового вяжущего. Дальнейшее совершенствование автоматизации линии и постоянная модернизация технологических узлов оборудования позволит еще более оптимизировать данное производство.
Планы дальнейшего производства
Как уже отмечалось выше, запуск второй технологической установки на ООО «СГПК» запланирован в конце 2009 г. В настоящий момент специалисты ООО «СГПК» ведут строительные работы для подготовки площадки под монтаж оборудования. Поставка технологического оборудования для второй очереди намечена на август 2009 г.
В 2008 г. ООО «Тобис» принимало участие в расширении завода «Майкопгипсстрой». Совместно со специалистами ООО «Майкопгипсстрой» решались вопросы подбора оборудования для модернизации действующего производства. В 2010 г. предполагается ввод в эксплуатацию новых производственных мощностей. Основное технологическое оборудования для новой установки уже поставлено.
В стадии изготовления находятся две технологические линии производства строительного гипса для ООО «Планета Гипс» (Майкоп, Республика Адыгея). Эти линии будут работать на гипсовом камне Шушукских месторождений с высоким содержанием CaSO4 . 2h3O (более 95%), что соответствует 1 сорту.
Фирма «Тобис» совместно с украинской компанией ООО «Строительное управление 77» планировали запуск в 2009 г. на Украине установки производства строительного гипса из отхода промышленного производства — фосфогипса. Украинские партнеры на технологической установке производительностью до 1 т/ч добились получения гипсового продукта из фосфогипса, удовлетворяющего технологическим требованиям и санитарным нормам к строительному гипсу. Поставка основного технологического оборудования промышленной установки получения строительного гипса из фосфогипса была осуществлена ООО «Тобис» летом 2008 г., но из-за сложных экономических условий монтаж и запуск технологического производства откладываются. Несмотря на это, планируется в 2009-2010 гг. изготовить полупромышленную установку малой производительности; на собственных производственных площадях произвести подбор оборудования и отработать технологический режим производства гипса строительного из фосфогипса.
sandin.ru
Производство строительного гипса. ООО Тобис, Самара.
Назначение завода по производству строительного гипса
Оборудование для производства строительного гипса предназначено для получения вяжущего удовлетворяющего требованиям ГОСТ 125 -79: Вяжущие гипсовые. Технические условия.
Тепловым агрегатом при производстве строительного гипса на нашей установке является котёл гипсоварочный ТОС165.
В зависимости от предела прочности на сжатие готового продукта в котле гипсоварочном может быть получен гипс строительный следующих марок: Г-4, Г-5, Г-6, Г-7.
Регулируя технологические параметры варки гипса можно получить гипс быстротвердеющий с индексом А начало схватывания не ранее 2 мин, конец не позднее 15 мин, н нормальнотвердеющий Б начало схватывания не ранее 6 мин, конец не позднее 30 мин.
В зависимости от степени помола может быть получен гипс среднего помола с остатком на сите 0,2 мм не более 14 % и тонкого помола с остатком на сите 0,2 мм не более 2%.
При получении продукта с тонким помолом менее 2 % производительность оборудования уменьшается.
Производительность завода по производству строительного гипса при среднем помоле 5-8 % остатка на сите 0,2 составляет 8 т/час.
Оборудование завода по производству строительного гипса размещается на технологической этажерке внутри неотапливаемого производственного помещения.
При строительстве нового завода по производству гипсового вяжущего в качестве ограждающий конструкций производственного корпуса используют сендвич-панели.
Размеры в плане производственной этажерки могут отличаться в зависимости от технического задания заказчика и имеющихся свободных площадей. Стандартными являются габаритные размеры в плане 4,5 х 30 м и 9.0 х 18 м. Максимальная высота оборудования внутри производственного помещения 16 м.
За габариты производственного укрытия, как правило, выносят оборудования участка дробления и транспортировки гипсового камня и силосный банки предназначенные для хранения и томления готового гипсового вяжущего.
Требования к исходному материалу – гипсоввому камню
Производство строительного гипса происходит с использованием гипсового камня удовлетворяющий требованиям ГОСТ4013-82 1 сорта с содержанием СaSO4 х 2h3O не менее 95 % и гипсовый камень 2 сорта с содержанием СaSO4 х 2h3O не менее 90 %. Качественное вяжущее в гипсоварочном котле марки не менее Г4 может быть получено с использованием гипсового камня 3 сорта с содержанием СaSO4 х 2h3O не менее 80 % на твёрдом гипсовом камне.
Для получения гипсового вяжущего в гипсоварочном котле используется гипсовый камень фракции 60 – 300 мм. Камень крупной фракции является наиболее чистым без включений инородного материала. В мелком щебне фракции 0- 60 мм включений не гипсовой породы больше, что понижает при варке гипса свойства готового гипсового вяжущего.
Производство строительного гипса — основные параметры и характеристики |
|
Исходный материал: | гипсовый камень 1,2 и 3 сорта ГОСТ 4013-82 фракции 60-300 мм |
Производительность технологической установки, т/час | 8,0 |
Производительность технологической установки, т/год | 56000 |
Годовой расход сырья, т/год | 70000 |
Готовый продукт: | гипсовое вяжущее марки Г4, Г5, Г6 и Г7 ГОСТ125 -79 |
Характер работы установки | непрерывный, периодический |
Установленная мощность электродвигателей, кВт, не более | 370 |
Запылённость отходящих газов на выходе, мг/м3, не более | 30¸50 |
Расход электроэнергии, кВт/час*тонну (полуводного гипса) | 35 |
Расход газа, м3/час*тонну (полуводного гипса) | 27 |
Расход сжатого воздуха, нм3/час*тонну (полуводного гипса) | 16 |
Технология производства строительного гипса
Технология производство строительного гипса с котлом гипсвоарочным ТОС165 состоит из трёх основных технологических переделов: 1- Дробления гипсового камня, 2-Сушка и помол гипсовой щебёнки, 3-Варка строительного гипса в гипсоварочном котле ТОС165.
Дробление гипсового камня
Дробление гипсового камня фракции 60 – 300 мм происходит в щёковой дробилке.
Камень загружается в приёмный бункер дробилки фронтальным или грейферным погрузчиком с накопительного склада.
Для бесперебойной работы гипсового производства на складе должен хранится 15 суточный запас сырья.
Подача гипсового камня в щёковую дробилку осуществляется качающимся питателем.
Размер фракции гипсовой щебенки после дробилки регулируется размером выходной щели дробилки. После дробилки гипсовая щебенка поступает на дальнейшую переработку в отделение помола и сушка по ленточному транспортёру.
Отделение дробления как правило находится за пределами закрытого производственного помещения, в котором осуществляется сушка, помол и варка гипса.
Сушка и помол гипсовой щебёнки
Измельчённый материал пройдя железоотделитель подаётся в молотковоую аксиальную мельницу.
Молотковая аксиальная мельница предназначена для тонкого помола гипсового щебня средней твёрдости с одновременной его подсушкой. Подача материала в мельницу осуществляется качающимся питателем из расходного бункера.
Размолотый и подсушенный в мельнице гипсовый порошок в потоке горячих газов поступает в систему пылегазоочистки. Молотковые аксиальные мельницы относятся к группе быстроходных молотковых размольных машин. Подача щебня в мельницу осуществляется по направлению вращения ротора. В результате ударов бил щебень измельчается в порошок. Тонкость помола материала зависит от скорости подачи, объёма вентилирующего агента и от угла установки лопаток встроенного сепаратора. В качестве теплоносителя и вентилирующего агента используются отходящие дымовые газы гипсоварочного котла.
Температура дымовых газов при входе в мельницу, в зависимости от выбранного теплового режима обжига гипса в котле, может колебаться от 250 до 500 0С.
Измельчённый, высушенный и отсепарированный до остатка не более 5- 8 % на сите № 02 гипсопорошок выносится в пылевоздушном потоке в систему пылеосаждения. В качестве первой ступени очистки используются циклоны, в качестве второй ступени очистки двухсекционные рукавные фильтры ТОС 3.8. Для устранения зависания материала в бункере циклона устанавливаются пневмоударные устройства. Циклон и фильтр рукавный теплоизолируются.
Регенерация рукавного фильтра осуществляется с помощью обратной продувки рукавов сжатым воздухом при отключении системой автоматики одной из секций. В качестве ткани для рукавов используется ткань типа «Метаарамид». Ткань выдерживает рабочую температуру до 230 0С. В случае незапланированного повышения температуры отходящего теплоносителя выше указанной температуры, в автоматическом режиме открывается установленная перед фильтром заслонка разбавления и наружный воздух поступает в систему аспирации. Сжатый воздух подаётся с температурой превышающей температуру точки росы не менее чем на 5-10 0С.
В качестве тягового агрегата используется дымосос Дн.
Уловленный циклонами и фильтрами рукавными порошок конвейерами винтовыми системой транспортёров поступает в теплоизолированный бункер сырьевой мучки. Для устранения подсосов в циклонах и фильтрах рукавных применяются затворы шлюзовые.
Варка строительного гипса в гипсоварочном котле ТОС165
Варка строительного гипса- дегидратация гипсового порошка происходит в котле гипсоварочном топочными газами с температурой 600-950 0С, подаваемыми по наружным каналам созданным футеровкой котла и жаровыми трубам. Теплоносителем в этих проходах служат продукты сгорания газообразного топлива в примыкающей к футеровке топочной камере.
Теплоноситель, пройдя каналы в футеровке котла и жаровые трубы с температурой 250-500 0С, не соприкасаясь с материалом, выносятся из котла. Гипс в варочном котле непосредственно не соприкасается с газами, его температура составляет 121-160 0С. Процесс обжига гипса сопровождается интенсивным выделением кристаллизационной воды. В этот период наблюдается кипение гипсового порошка.
Гипсоварочный котёл представляет собой вертикальный стальной барабан, оборудованный мешалкой и закрытый сверху крышкой, снабжённый патрубками для загрузки порошка и отвода смеси пара с частицами гипса.
Длительность пребывания материала регулируется режимом загрузки и выгрузки в зависимости от требуемой температуры материала внутри котла. Подача материала в котёл осуществляется винтовым конвейером из бункера сырьевой мучки. Регулирование производительности по загрузке осуществляется изменением числа оборотов конвейера винтового. В непрерывном режиме загрузка сырого гипса осуществляется непрерывно выше уровня материала в котле через патрубок установленный на крышке котла. Вертикальный разгрузочный жёлоб, помещённый внутри котла, в нижней части открыт.
Разгрузка материала происходит непрерывно методом перелива с верхней части разгрузочного жёлоба. Для улучшения транспортировки гипса с нижней части разгрузочного жёлоба наверх, в нижнюю часть подают сжатый воздух давлением 2 атм
Разряжение в дымовых каналах котла создаётся за счёт дымососа, который одновременно является тяговым агрегатом мельницы молотковой аксиальной. Пары воды и частицы гипса образованные при гидратации гипса в котле, а также избыточная пылевоздушная смесь бункера томления удаляется из котла. Полученный в гипсоварочном котле полуводный гипс выгружается в бункер томления.
Автоматизированная система управления
производством строительного гипса
Автоматизированная система управления производством строительного гипса обеспечивает работу всех элементов технологического оборудования в автоматическом, полуавтоматическом и ручном режимах для обеспечения технологического процесса производства строительного гипса.
Система представляет собой комплекс аппаратных и программных средств, совместно выполняющих задачу по управлению технологическим процессом.
Архитектура системы
Система управления может быть условно разделена на три уровня:
Нижний (полевой) уровень представлен датчиками и исполнительными механизмами. В качестве датчиков в системе присутствуют датчики температуры, давления, сигнализаторы уровня, приборы контроля тока двигателя, индуктивные датчики, концевые сигнализаторы положения и дополнительные контакты, сигнализирующие о состоянии и режиме работы двигателей.
Исполнительными механизмами системы являются двигатели с контакторами для прямого пуска, двигатели с переменной частотой вращения, управляемые частотно-регулируемыми приводами, электромеханические позиционеры для управления дроссельными заслонками дымососов и переключателем направления подачи гипса в силоса.
На среднем уровне система представлена программируемым логическим контроллером (ПЛК) с модулями ввода-вывода аналоговых и дискретных сигналов. ПЛК отвечает за прием сигналов от датчиков и выдачу управляющих сигналов на исполнительные механизмы в соответствии с заложенной в него программой.
На верхнем уровне система представлена устройством человеко-машинного интерфейса. Это компьютер, соединенный с контроллером промышленной сетью, и с установленным на нем специализированным программным обеспечением.
Контроллерное оборудование, коммутационная и пускорегулирующая аппаратура поставляются смонтированными в шкафы промышленного назначения. КИП поставляется отдельно в заводской упаковке.
Вся пускорегулирующая аппаратура, автоматы защиты, контакторы и ЧРП производства Siemens.
Программируемый логический контроллер
В качестве ПЛК в системе применен контроллер Siemens Simatic S7 300 с набором дискретных и аналоговых входов и выходов, в количестве, достаточном для подключения всех датчиков и исполнительных механизмов, и с резервом, определяемым на этапе проектирования.
Контроллер должен быть смонтирован в шкаф, который должен быть установлен в щитовой комнате с температурным режимом 0-50 оС.
Краткое описание заложенных в контроллер алгоритмов будет рассмотрено ниже.
Человеко-машинный интерфейс
В качестве системы человеко-машинного интерфейса применена операторская станция (ОС) с установленной операционной системой Microsoft Windows XP и SCADA-системой Siemens Simatic WinCC. Данная станция связана с ПЛК промышленной сетью MPI для получений информации о протекании технологического процесса.
Основными функциями ОС являются:
- Отображение состояния технологического процесса и оборудования в виде мнемосхем, таблиц, трендов и сообщений на маниторе компьютера.
- Предоставление оператору возможности для настройки технологических режимов работы установки.
- Ручное управление некоторыми элементами установки.
- Показ и архивирование аварийных и служебных сообщений.
- Хранение исторических данных о процессе с возможностью их просмотра.
tobis50.ru
Гипсовые вяжущие вещества: описание,виды,применение,фото,видео | Строительные материалы
Гипсовые вяжущие — группа воздушных вяжущих веществ, в затвердевшем состоянии состоящих из двуводного сульфата кальция (CaSO4 • 2Н2О), включает в себя собственно гипсовые вяжущие (далее для краткости — гипс) и ангидритовые вяжущие (ангидритовый цемент и эстрихгипс).
Гипс(в строительной практике иногда используют устаревший термин алебастр от гр. alebastros — белый) — быстротвердеющее воздушное вяжущее, состоящее из полуводного сульфата кальция CaSO4 • 0,5Н2О, получаемого низкотемпературной (< 200° С) обработкой гипсового сырья.
Сырьем для гипса служит в основном природный гипсовый камень, состоящий из двуводного сульфата кальция (CaSO4•2Н2О) и различных механических примесей (глины и др.). В качестве сырья могут использоваться также гипсосодержащие промышленные отходы, например, фосфогипс, а также сульфат кальция, образующийся при химической очистке дымовых газов от оксидов серы с помощью известняка. Все это указывает на то, что проблем с сырьем для гипсовых вяжущих нет.
Получение гипса включает две операции:
— термообработку гипсового камня на воздухе при 150… 160°С; при этом он теряет часть химически связанной воды, превращаясь в полуводный сульфат кальция β-модификации:
CaSO4 • 2Н2О → CaSO4 • 0,5Н2О + 1,5Н2О
— тонкий размол продукта, который можно производить как до, так и после термообработки; гипс — мягкий минерал (твердость по шкале Мооса — 2), поэтому размалывается он очень легко.
Таким способом производится основное количество гипса; обычно для этого используют гипсоварочные котлы. Гипс β-модификации далее для краткости будем называть просто «гипс».
Доступность сырья, простота технологии и низкая энергоемкость производства (в 4…5 раз меньше, чем для получения портландцемента) делают гипс дешевым и привлекательным вяжущим.
Общая классификация минеральных вяжущих веществ
Минеральными вяжущими веществами называют тонкоизмельченные порошки, образующие при смешивании с водой пластичное тесто, под влиянием физико-химических процессов переходящее в камневидное состояние. Это свойство вяжущих веществ используют для приготовления на их основе растворов, бетонов, безобжиговых искусственных каменных материалов и изделий. Различают минеральные вяжущие вещества воздушные и гидравлические.
Воздушные вяжущие вещества твердеют, долго сохраняют и повышают свою прочность только на воздухе. К воздушным вяжущим веществам относятся гипсовые и магнезиальные вяжущие, воздушная известь и кислотоупорный цемент.
Гидравлические вяжущие вещества способны твердеть и длительно сохранять свою прочность не только на воздухе, но и в воде. В группу гидравлических вяжущих входят портландцемент и его разновидности, пуццолановые и шлаковые вяжущие, глиноземистый и расширяющиеся цементы, гидравлическая известь. Их используют как в надземных, так и в подземных и подводных конструкциях.
Наряду с этим различают вяжущие вещества, эффективно твердеющие только при автоклавной обработке — давлении насыщенного пара 0,8…1,2 МПа и температуре 170…200°С. В группу вяжущих веществ автоклавного твердения входят известково-кремнеземистые и известково-нефелиновые вяжущие.
Производство гипсовых вяжущих веществ.
Производство низкообжиговых гипсовых вяжущих чаще всего осуществляют в варочных котлах с соблюдением следующей последовательности операций: дробление природного гипса, совмещение помола и сушки, тепловая обработка.
По этой схеме гипсовый камень с помощью грейферного крана загружается в приемный бункер, после чего питателем подается в щековую дробилку, где он подвергается грубому измельчению-дроблению до кусков размером менее 40 мм. Затем раздробленный материал подается элеватором в расходный бункер, из которого материал при помощи питателя равномерно поступает в шахтную мельницу. В шахтной мельнице материал одновременно измельчается и подсушивается. Подогрев гипса облегчает размалывание и интенсифицирует последующий процесс обжига. Отработанные дымовые газы подают в шахтную мельницу по теплоизолированному газопроводу. Дымовые газы образуются в топке при сжигании твердого. Жидкого или газообразного топлива. Размолотый в порошок природный гипс, нагретый до температуры 70…90°С, уносится из шахтной печи и улавливается системой пылеулавливающих устройств (циклоны, рукавные фильтры), после чего порошок гипсового камня подается в гипсоварочный котел, где происходит обжиг (дегитратация) двуводного гипса по реакции:
CaSO4∙2H2O = CaSO4∙0,5H2O+1,5H2O.
Дегидратация двуводного гипса начинается при температуре 75…80°С, однако в условиях производства удаление химически связанной воды довольно интенсивно происходит при температуре от 110 до 180°С.
Варочный котел представляет собой стальной цилиндр объемом от 3 до 15 м3, футерованный кирпичной кладкой. Внутри котла находятся четыре жаровые трубы и мешалка в виде вертикального вала с лопастями. Под котлом расположена топка. Топочные газы после обогрева днища поступают в кольцевые газоходы и омывают последовательно нижнюю, среднюю и верхнюю часть стенки котла, а также проходят через жаровые трубы нижнего и верхнего ярусов.
Предварительно измельченный и подсушенный порошок гипсового камня загружают через загрузочный люк в варочный котел, где в течение 1…3 часов двуводный гипс обезвоживается и превращается в полуводный. В процессе варки гипс интенсивно перемешивается и равномерно нагревается, что обеспечивает получение однородного продукта высокого качества. После окончания варки гипс через разгрузочное отверстие в нижней части котла поступает в бункер томления и выдерживается там в течение 20…40 минут. Здесь за счет теплоты выгружаемого материала в нем продолжается дегидратация оставшихся в большом количестве зерен двуводного гипса. Из бункера томления гипс направляется на склад готовой продукции.
Также имеет распространение совместный помол и обжиг гипсового камня в шаровых мельницах. В них гипсовый камень измельчается, мелкие частицы его подхватываются потоком поступающих в мельницу горячих дымовых газов с температурой 600…700°С. Находясь во взвешенном состоянии, частицы гипсового камня обезвоживаются до превращения в полуводный гипс и выносятся дымовыми газами из мельницы в пылеосадительные устройства. Основное преимущество данного способа по сравнению с производством гипса в варочных котлах − более высокая производительность за счет непрерывности процесса производства.
Твердение строительного гипса.
При затворении полуводного гипса водой образуется пластичное тесто, которое быстро загустевает и переходит в камневидное состояние. Процесс твердения полуводного гипса происходит в результате гидратации полуводного гипса, т.е. присоединения к нему воды и перехода его в двуводный гипс:
CaSO4∙0,5H2O+1,5H2O = CaSO4∙2H2O.
Процесс твердения можно разделить на три этапа. В первый период, начинающийся с момента смешивания гипса с водой, полуводный гипс растворяется. Одновременно он гидратируется, присоединяя 1,5 молекулы воды и превращаясь в двуводный гипс. Так как двуводный гипс менее растворим, чем полуводный, то образовавшийся вначале насыщенный раствор полуводного гипса становится пересыщенным по отношению к двуводному гипсу и тот выпадает из раствора. Во втором периоде вода взаимодействует с полуводным гипсом с прямым присоединением ее к твердому веществу. Это приводит к возникновению двуводного гипса в виде мельчайших кристаллических частичек и к образованию коллоидной массы-геля. При этом происходит схватывание массы.
В третьем периоде коллоидные частички двуводного гипса перекристаллизовываются с образованием более крупных кристаллов, которые срастаются между собой с образованием кристаллических сростков, что сопровождается твердением системы и ростом ее прочности. Однако рассмотренные периоды не протекают в строгой последовательности, а налагаются один на другой.
Дальнейшее высыхание твердеющей массы приводит к значительному повышению прочности гипса. Для ускорения твердения применяют искусственную сушку гипсовых изделий при температуре не выше 60…65°С. При более высокой температуре может начаться процесс разложения двуводного гипса, сопровождаемый резким понижением прочности. При твердении гипс увеличивается в объеме до 1%, хорошо заполняя формы при отливке гипсовых изделий.
Свойства гипсовых вяжущих веществ.
Качество строительного гипса устанавливают на основании ГОСТ 125-79* «Вяжущие гипсовые. Технические условия» и данных, полученных в результате определения: тонкости помола, нормальной густоты гипсового теста, сроков схватывания, предела прочности при изгибе и сжатии образцов, изготовленных из гипсового теста нормальной густоты. Испытания проводят в соответствии с ГОСТ 23789-79* «Вяжущие гипсовые. Методы испытаний».
Определение тонкости помола гипса.
Сущность метода заключается в определении массы гипсового вяжущего, оставшегося при просеивании на сите с ячейками размером в свету 0,2 мм. Пробу вяжущего массой 50 г, взвешенную с погрешностью не более 0,1 г и предварительно высушенную в сушильном шкафу в течение 1 ч при температуре (50±5) °С, высыпают на сито и производят просеивание вручную или на механической установке. Просеивание считают законченным, если сквозь сито в течение 1 мин при ручном просеивании проходит не более 0,05 г вяжущего. Тонкость помола отдельной пробы определяют в процентах с погрешностью не более 0,1% как отношение массы, оставшейся на сите, к массе первоначальной пробы. За величину тонкости помола принимают среднее арифметическое результатов двух испытаний. В зависимости от степени помола различают виды вяжущих, приведенные в табл. 1.
Таблица 1.
Виды гипса в зависимости от степени помола (ГОСТ 125-79)
Вид вяжущего | Индекс степени помола | Максимальный остаток на сите с размерами ячеек в свету 0,2 мм, %, не более |
Грубого помола | I | 23 |
Среднего помола | II | 14 |
Тонкого помола | III | 2 |
Определение стандартной консистенции (нормальной густоты) гипсового теста.
Стандартная консистенция (нормальная густота) характеризуется диаметром расплыва гипсового теста, вытекающего из цилиндра (диаметром 50±0,1 мм и высотой 100±0,1 мм) при его поднятии. Диаметр расплыва должен быть равен 180±5 мм. Количество воды является основным критерием определения свойств гипсового вяжущего: времени схватывания и предела прочности. Количество воды выражается в процентах как отношение массы воды, необходимой для получения гипсовой смеси стандартной консистенции, к массе гипсового вяжущего в граммах.
Порядок проведения испытания следующий. В чистую чашку, предварительно протертую тканью, вливают воду, масса которой зависит от свойств гипсового вяжущего. Затем в воду в течение 2-5 секунд всыпают от 300 до 350 г гипсового вяжущего. Массу перемешивают ручной проволочной мешалкой в течение 30 секунд, начиная отсчет времени от начала всыпания гипсового вяжущего в воду. После окончания перемешивания цилиндр, установленный в центре стекла, заполняют гипсовым тестом, излишки которого срезают линейкой. Цилиндр и стекло предварительно протирают тканью. Через 45 секунд, считая от начала засыпания гипсового вяжущего в воду, или через 15 секунд после окончания перемешивания цилиндр очень быстро поднимают вертикально на высоту 15-20 см и отводят в сторону. Диаметр расплыва измеряют непосредственно после поднятия цилиндра линейкой в двух перпендикулярных направлениях с погрешностью не более 5 мм и вычисляют среднее арифметическое значение. Если диаметр расплыва теста не соответствует 180±5 мм, испытание повторяют с измененной массой воды до тех пор, пока не будет достигнут указанный диаметр расплыва. Затраченное количество воды выражают в мл на 100 г гипса. Эта величина характеризует нормальный расход воды для получения гипсового теста нормальной густоты (стандартной консистенции).
Определение сроков схватывания гипсового теста.
Для определения сроков схватывания используют гипсовое тесто стандартной консистенции. Сущность метода состоит в определении времени от начала контакта гипсового вяжущего с водой до начала и конца схватывания теста. Сроки схватывания гипсового теста определяют при помощи прибора Вика (см. рис. 1).
1— цилиндрический металлический стержень;2— обойма станины;
3— стопорное устройство;4— указатель;5— шкала;6— пестик;7— игла
Рис. 1. Прибор Вика
Рис. 2. Коническое кольцо
Игла прибора Вика должна быть изготовлена из твердой нержавеющей стальной проволоки с полированной поверхностью и не должна иметь искривлений. Диаметр иглы 1,1±0,02 мм. Высота рабочей части 50 мм.
Кольцо (см. рис. 2), предварительно протертое и смазанное минеральным маслом и установленное на полированную пластинку, заполняют тестом. Для удаления попавшего в тесто воздуха кольцо с пластинкой 4-5 раз встряхивают путем поднятия и опускания одной из сторон пластинки примерно на 10 мм. После этого излишки теста срезают линейкой и заполненную форму на пластинке устанавливают на основании прибора Вика.
Подвижную часть прибора с иглой устанавливают в такое положение, при котором конец иглы касается поверхности гипсового теста, а затем иглу свободно опускают в кольцо с тестом. Погружение производят один раз каждые 30 секунд, начиная с целого числа минут. После каждого погружения иглу тщательно вытирают, а пластинку вместе с кольцом передвигают так, чтобы игла при новом погружении попадала в другое место поверхности теста.
Начало схватывания определяют числом минут, истекших от момента добавления вяжущего к воде до момента, когда свободно опущенная игла после погружения в тесто первый раз не доходит до поверхности пластинки, а конец схватывания — когда свободно опущенная игла погружается на глубину не более 1 мм. Время начала и конца схватывания выражают числом минут.
В зависимости от сроков схватывания различаются виды вяжущих, приведенные в табл. 2.
Таблица 2. Виды вяжущих в зависимости
от сроков схватывания (ГОСТ 125-79)
Вид вяжущего | Индекс сроков твердения | Сроки схватывания, мин | |
начало, не ранее | конец, не позднее | ||
Быстротвердеющий | А | 2 | 15 |
Нормальнотвердеющий | Б | 6 | 30
|
Медленнотвердеющий | В | 20 | Не нормируется |
Определение марки гипса. Марку гипса определяют на основании результатов испытания трех образцов, изготовленных из гипсового теста нормальной густоты, на прочность при изгибе и при сжатии. Для изготовления образцов берут пробу гипсового вяжущего массой от 1,0 до 1,6 кг. Гипсовое вяжущее в течение 5−20 секунд засыпают в чашку с водой, взятой в количестве, необходимом для получения теста стандартной консистенции. После засыпания вяжущего смесь интенсивно перемешивают ручной мешалкой в течение 60 секунд до получения однородного теста, которым заливают форму (см. рис. 3).
Рис. 3. Форма металлическая для изготовления образцов.
Предварительно внутреннюю поверхность металлических форм слегка смазывают минеральным маслом средней вязкости. Отсеки формы наполняют одновременно, для чего чашку с гипсовым тестом равномерно продвигают над формой. Для удаления вовлеченного воздуха после заливки форму встряхивают 5 раз, для чего ее поднимают за торцевую сторону на высоту от 8 до 10 мм и опускают. После наступления начала схватывания излишки гипсового теста снимают линейкой, передвигая ее по верхним граням формы перпендикулярно к поверхности образцов. Через 15±5 минут после конца схватывания образцы извлекают из формы, маркируют и хранят в помещении для испытаний. Определение прочности образцов, изготовленных из гипсового теста стандартной консистенции, производят через 2 часа после контакта гипсового вяжущего с водой.
Определение предела прочности на растяжение при изгибе.
Для проведения испытаний образец устанавливают на опоры прибора для испытания на изгиб таким образом, чтобы те грани его, которые были горизонтальными при изготовлении, находились в вертикальном положении. Схема расположения образца на опорных валиках приведена на рис. 4.
Расчет предела прочности производят по формуле
(1)
где – разрушающая сила, Н;
–пролет между опорами, мм;
и – ширина и высота поперечного сечения балки, мм.
Предел прочности при изгибе вычисляют как среднее арифметическое результатов трех испытаний.
Рис. 4. Схема расположения образца при испытании на изгиб.
Определение предела прочности на растяжение при сжатии.
Полученные после испытания на изгиб шесть половинок балочек сразу же подвергают испытанию на сжатие. Образцы помещают между двумя пластинами (см. рис. 5) таким образом, чтобы боковые грани, которые при изготовлении прилегали к продольным стенкам форм, находились на плоскостях пластин, а упоры пластин плотно прилегали к торцевой гладкой стенке образца (рис. 6). Образец вместе с пластинами подвергают сжатию на прессе. Время от начала равномерного нагружения образца до его разрушения должно составлять от 5 до 30 с, средняя скорость нарастания нагрузки при испытании должна быть (10±5) кгс/смв секунду.
1 − верхняя плита пресса;2− пластинки;3− половина образца;4− нижняя плита пресса.
Рис. 5. Металлические пластины
для испытания образцов на сжатие.
Рис. 6. Схема расположения образца
при испытании на сжатие.
Предел прочности на сжатие одного образца определяют по формуле:
(2)
где – разрушающая сила, Н;
–рабочая площадь пластины, равная 25 см.
Предел прочности на сжатие вычисляют как среднее арифметическое результатов шести испытаний без наибольшего и наименьшего результатов.
Минимальный предел прочности каждой марки вяжущего должен соответствовать значениям, приведенным в табл. 3.
Табл. 3. Требования ГОСТ 125-79
к прочности образцов
Марка вяжущего | Предел прочности образцов-балочек размерами 40х40х160 мм в возрасте 2 ч, не менее, МПа (кгс/см2) | |
при сжатии | при изгибе | |
Г-2 | 2 (20) | 1,2 (12) |
Г-3 | 3 (30) | 1,8 (18) |
Г-4 | 4 (40) | 2,0 (20) |
Г-5 | 5 (50) | 2,5 (25) |
Г-6 | 6 (60) | 3,0 (30) |
Г-7 | 7 (70) | 3,5 (35) |
Г-10 | 10 (100) | 4,5 (45) |
Г-13 | 13 (130) | 5,5 (55) |
Г-16 | 16 (160) | 6,0 (60) |
Г-19 | 19 (190) | 6,5 (65) |
Г-22 | 22 (220) | 7,0 (70) |
Г-25 | 25 (250) | 8,0 (80) |
building-ooo.ru
Производство гипсовой лепнины, изготовление лепнины из гипса
Мы имеем собственное производство гипсовой лепнины
Одним из распространенных вариантов декорирования внутреннего пространства помещения является отделка лепниной из гипса. Издавна элементы лепного декора в помещении считаются признаком роскоши, богатства, эксклюзивности и отличного вкуса. Исторически рельефную лепнину из гипса использовали для декорирования оконных и дверных проемов, стен и потолков, встроенных ниш и других элементов роскошных особняков и имений. Современные же технологии изготовления лепнины из гипса обеспечивают ее доступность для любого покупателя.
Уникальные свойства лепного декора
Декоративные лепные элементы из гипса отличаются не только красотой, эстетикой и изысканностью, но и практичностью. С одной стороны правильно подобранный лепной декор подчеркнет особенности и достоинства интерьера помещения, а с другой – позволит скрыть недостатки или ошибки при строительстве и отделке комнаты, а также не эстетичные элементы систем тепло- и водоснабжения (например, щели, стыки, трубы, батареи, вентиляционные решетки и т.д.). Кроме того, массивные элементы лепного декора (например, колонны) помогут разделить помещения на несколько функциональных зон, визуально увеличить, расширить или сузить внутреннее пространство, сделать его более объемным и рельефным.
Современный ассортимент лепных декоративных элементов позволяет использовать их для дизайнерского оформления стен, углов, потолков, внутренних дверных и оконных проемов, отдельных ниш и пустующего пространства, дополнительного украшения элементов осветительной системы (розетки, плафоны, люстры, выключатели и т.д.). Высокой популярностью в сфере дизайна интерьера лепной декор из гипса пользуется благодаря следующим основным факторам:
- Экологическая чистота. Гипс является природным материалом, соответственно не содержит токсичных и аллергических соединений, как, например, синтетический декор. Благодаря природному химическому составу гипс пропускает воздух и влагу, обеспечивая тем самым естественную вентиляцию, что позитивно сказывается на психологическом и физическом состоянии человека.
- Долговечность. Лепнина из гипса практически не подвержена износу, а при правильном уходе и своевременной реставрации прослужит до сотни лет. Гипсовый лепной декор прекрасно переносит изменения температуры, практически не теряет прочность и не дает усадки состава.
- Низкий уровень пожароопасности. Благодаря своему химическому составу и относительно полой структуре гипс практически не проводит тепло, а соответственно – не горит.
- Дизайнерская вариативность. Гипсовые декоративные изделия – огромное поле для творчества, ведь лепной декор может иметь абсолютно любой размер и форму, даже самую причудливую (от правильных геометрических фигур до виноградных лоз, морских раковин, рогов изобилия и т.д.). При этом «оживить», придать ярких оттенков лепнине очень легко с помощью лакокрасочных материалов, технологии золочения и т.д.
В течение многих столетий использования декоративные гипсовые лепные элементы зарекомендовали себя как надежное, оригинальное и элегантное дизайнерское украшение помещения. Как правило, декоративная лепнина из гипса используется для украшения интерьеров в классическом стиле. При этом декоративная лепнина позволяет создавать впечатление стилизации помещения под исторические эпохи, принося во внутреннее пространство чувство гармонии, изысканности, богатства. Однако, сейчас многие дизайнеры используют лепные гипсовые элементы при оформлении помещения в стилях, модерн, хай-тек, минимализм, арт-деко, поп-арт, а также их комбинирования, что придает пространству оригинальность, экстравагантность, неординарность.
Этапы изготовления гипсовой лепнины
Дизайн проект
перепланировка, визуализация в 3D, список гипсовых изделий, начиная от колонн и заканчивая фризами. Дизайн лепнины в интерьере.
Художественные работы
если возникнет желание «оживить» лепнину красками, наши художники выполнят декоративные росписи или венецианскую штукатурку.
Технология производства лепных декоративных элементов
На современном рынке декора гипсовая лепнина, как правило, представляет собой архитектурные формы следующего вида: карнизы, тяги, розетки, углы, молдинги, фризы, камины, кронштейны, арки, капители, пилястры, колонны, орнаменты и др. Технология производства данного лепного декора предполагает следующие стандартные этапы работы:
- разработка модели будущего декоративного элемента в трехмерной графике;
- лепка проектной модели из пластилина;
- производство (на основе проектной модели) формы для отлива декоративного элемента;
- отлив декоративного элемента.
Исключением из данной последовательности производства лепнины является лепной декор ручной работы. Ручные лепные элементы выполняются непосредственно на декорируемой поверхности с использованием технологии резьбы. Более массивные и другие стандартные элементы лепнины отливаются отдельно в специальных заготовках (металлические или силиконовые). Лепной декор ручной работы изготавливается в основном на заказ, а его форма, размер, текстура и другие характеристики зависят исключительно от пожеланий заказчика.
Например, лепные элементы могут быть стилизированы под мрамор, старину, повторять абсолютно любые фактуры. В любом варианте ручная декоративная лепка придаст элегантный, роскошный и респектабельный вид, как внешнему, так и внутреннему пространству помещения.
Установка лепнины из гипса
Особенности технологии монтажа декоративных лепных элементов обуславливаются формой и весом последних:
- Малогабаритные декоративные изделия из гипса — монтируются при помощи клеевых основ (например, клей ПВА). Предварительно до нанесения клея обратная поверхность лепного элемента должна быть отшлифована с помощью наждачной бумаги. Только после шлифовки на обратную поверхность наносят клей и прикладывают к месту монтажа, придерживая 2-3 минуты.
- Крупногабаритные лепные изделия — монтируются с использованием клеевых смесей (готовится специалистами непосредственно перед монтажом) и оцинкованных шурупов (предотвращает появление ржавчины). Перед монтажом гипсовой лепнины обратная сторона изделия и поверхность, на которую будет производиться крепеж должны быть влажными и обработанными клеем ПВА. После посадки декоративного элемента на клей осуществляется его закрепление с помощью оцинкованных шурупов, каждый из которых вкручивается на расстоянии 20-25 сантиметров.
- Монтаж колонн и пилястров – наиболее трудоемкий и технологически сложный процесс, который должны выполнять минимум два специалиста-монтажника. Монтируется колонна из двух частей, которые склеиваются между собой малярным скотчем. Далее осуществляется наполнение полости готовой колонны гипсовой стружкой. Наполнение должно происходить поэтапно (уровень наполнения не более 20сантиметров за один раз) для того чтобы гипсовая конструкция не треснула или сдвинулась.
- Окончательную отделку и затирку швов можно осуществлять через 2 суток после основного этапа монтажа. Если Вы планируете дальнейшее декорирование гипсовой лепнины, то через сутки после монтажа, изделия необходимо обработать специальной акриловой грунтовкой. Акриловая грунтовка не только облегчит процесс покрытия изделия лакокрасочными материалами, но и защитит его от повреждений.
Декоративное оформление лепнины
Декоративная гипсовая лепнина сама по себе очень красивый и статусный элемент дизайна интерьера. Однако современная сфера художественного оформления позволяет осуществлять дальнейшее декорирование лепных гипсовых элементов. Художественное декорирование гипсовой лепнины осуществляется с помощью следующих технологий:
- Тонирование — предполагает придание определенного оттенка лепнине, который будет гармонировать с общим интерьером.
- Одно- и многоцветная покраска, в том числе золочение и серебрение, вдохнет «жизнь» в лепной декор. Гипсовая лепка заиграет красочными переливами и загадочными, привлекающими внимание оттенками.
- Художественная роспись — смотрится на гипсовой лепнине особенно элегантно. В зависимости от тематики, в которой выполнен лепной декор и общего интерьера, он может быть украшен геометрическими фигурами, пейзажами, натюрмортами и т.д.
- Искусственное придание эффекта «состаривания» — очень эффектно смотрится в классическом оформлении помещения. Визуально потертые лепные элементы придают аристократическое благородство внутреннему убранству помещения.
- Придание заданной текстуры (мрамор, камень, фарфор, металл и т.д.) также направленно на гармонизацию лепки с общим интерьером.
- Например, если в пространстве помещения присутствуют мраморные элементы, то отделка лепным декором с мраморной текстурой придаст законченный внешний вид стилистической концепции.
Огромное количество современных лакокрасочных средств (лаки, краски, тонеры, воски и т.д.) позволяет художникам и мастерам декорировать композиции из элементов лепного декора различными оттенками цветов и техниками нанесения. Кроме того, окрашенные или затонированные лепные элементы могут изменять оттенки в зависимости от угла освещения в помещении, что позволяет создавать поистине эксклюзивные интерьеры, которые отражают атмосферу и настроение владельцев.
Студия лепного декора ГессоСтар предлагает комплекс услуг по изготовлению и установке декоративных гипсовых лепных изделий. В ассортименте нашего каталога работ имеются готовые декоративные лепные изделия из гипса (карнизы, розетки, вентиляционные решетки, колонны, углы и др.). Кроме того, у нас Вы можете заказать декоративные панно, украшения для каминов и другие лепные элементы в авторском исполнении (эскизы могут быть выполнены как специалистами компании, так и принадлежать клиенту).
Специалисты компании ГессоСтар знакомы с различными техниками ручной лепки и декорирования, в своей работе применяют разнообразные виды шпаклевки и лакокрасочных материалов. Наши профессионалы ручной лепки из гипса оформят фасад и внутреннее пространство любого помещения эксклюзивными лепными орнаментами, привнося нотки индивидуальности и изысканности.
Студия ГессоСтар кроме изготовления лепных декоративных элементов также занимается их монтажом. Строители из нашей компании специализируются на монтаже гипсовой лепнины, знакомы со всеми особенностями ее установки и подготовки поверхности для крепежа лепного декора. Литье и установка гипсовой лепнины бренда ГессоСтар осуществляется мастерами с многолетним успешным опытом работы, что гарантирует высокое качество готового изделия.
Также компания ГессоСтар выполняет работы по художественному декорированию гипсовой лепнины – тонирование, золочение, покраска, искусственное состаривание, стилизация под заданную текстуру и др. Наши специалисты подберут оттенки и структуры лепного декора, которые идеально впишутся в Ваш интерьер и подчеркнут его индивидуальность и роскошность.
Студия лепного декора ГессоСтар предлагает Вам эксклюзивные идеи для оформления помещений на основе декорирования роскошными и одновременно практичными лепными элементами из гипса.
Наше предложение
- полный комплекс работ по разработке, производству и монтажу гипсовых элементов;
- архитектурный лепной гипсовый декор для любых помещений;
- изготовление лепнины из гипса по каталогу нашей компании, а также по эскизам заказчика;
- в наличии ассортимент гипсовых лепных карнизов, изготовление колонн, панно, балясин, украшение каминов, вентиляционных решеток, и многое другое;
- декоративная покраска лепнины (патина, золочение, имитация «под мрамор», «под дерево») и искусственное «старение» поверхности;
Квалифицированный дизайн и мастерство литья на основе многолетнего опыта позволяют нам производить гипсовые элементы, которые проходят строгий контроль качества на всех этапах изготовления.
Наша компания имеет большой опыт реализации проектов любого уровня сложности, что позволяет нам соответствовать самым взыскательным требованиям и пожеланиям заказчика. Установка лепного гипсового декора выполняется мастерами с многолетним опытом, гарантируя высокое качество исполнения работ.
Остались вопросы? Хотите сделать заказ?
www.gessostar.ru