Как рассчитать толщину стен: Толщина наружных стен дома с примером расчета на газобетоне

Содержание

Толщина наружных стен дома с примером расчета на газобетоне

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м2·°С/Вт), где:

δ – толщина материала, м;

λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Материал стены

Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

5,2/10850

4,3/8300

4,5/8850

4,15/7850

Минеральная вата

4,7/9430

3,9/7150

4,1/7700

3,75/6700

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

5,2/10850

4,0/7300

4,2/8000

3,85/7000

Минеральная вата

4,7/9430

3,6/6300

3,8/6850

3,45/5850

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

2,4/2850

2,6/3430

2,25/2430

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо2·°С/Вт) ограждающей конструкции рассчитывается как

Rо = R1+ R2+R3, где:

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м2·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

2000

2,1

Белгородская обл., Волгоградская обл.

4000

2,8

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

6000

3,5

Магаданская обл.

8000

4,2

Чукотка, Камчатская обл.,

г. Воркута

10000

4,9

 

12000

5,6

Уточненные значения градусо-суток отопительного периода,  указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

Тепло-

проводность,

 Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

 

Силикатный кирпич

1,25

0,38-0,87

 

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,20-0.40

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

 

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

Rобщ= R1+ R2+…+ Rn+ Ra.l где:

R1-Rn — термосопротивления различных слоев

Ra.l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок — 400 мм, минеральная вата — ? мм, облицовочный кирпич — 120 мм) при значении сопротивления теплопередаче 3,4 м2*Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м2×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) – среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Расчет толщины стен дома | PoweredHouse

Прежде чем определиться с конструкцией стены, необходимо произвести некоторые простейшие расчеты, которые сделают картину будущих затрат на отопление более ясной.

Приобретая стеновой строительный материал, ознакомьтесь с его техническими характеристиками. Там, как правило, указан такой важный параметр, как коэффициент теплопроводности. На его основе определяется коэффициент теплового сопротивления конструкции, а также необходимая толщина стены. Толщину стены (δ) разделите на коэффициент теплопроводности материала (λ) и получите коэффициент теплового сопротивления конструкции (R): R = δ / λ.

По нормам сопротивление теплопередаче наружных стен должно быть не менее 3,2 λ Вт/м •°С.

Пример расчета коэффициента теплового сопротивления конструкции:

1) Блок ячеистого бетона толщиной 300 мм (коэффициент теплопроводности = 0,12 Вт/м•°С). Сопротивление теплопередаче стены: 0,3/0,12 = 2,5 Вт/м•°С. Вывод: показатель ниже нормы.

2) Блок ячеистого бетона толщиной 400 мм (коэффициент теплопроводности = 0,12 Вт/м•°С). Сопротивление теплопередаче стены: 0,4/0,12 = 3,3 Вт/м•°С. Вывод: показатель чуть выше нормы. Подобные расчеты верны для блоков, уложенных исключительно на клей.

Для того чтобы определиться с толщиной будущей стены, необходимо использовать те же показатели, но использовать их в другом порядке: нормативный показатель сопротивления теплопередаче (λ) умножаем на коэффициент теплопроводности (R) и получаем толщины стены (δ), соответствующую современным нормам с точки зрения энергоэффективности: δ = λ х R.

Пример расчета необходимой толщины стены:

1) Коэффициент теплопроводности сосны и ели поперек волокон равен 0,18 Вт/м•°С, рассчитываем толщину стены: 0,18 х 3,2 = 0,576 м, значит, для того чтобы получить деревянную стену с нормативным сопротивлением теплопередаче, нужно, чтобы она составляла не менее 576 мм.

2) Определим необходимую толщину стены из кирпича. Кирпич глиняный плотностью 1800 или силикатный плотностью 1600 кг/м3 имеет коэффициент теплопроводности 0,81 Вт/м•°С, следовательно толщина стены: 0,81 х 3,2 = 2,592 м.

3) Рассчитаем толщину стены из железобетона (коэффициент теплопроводности 2,04 Вт/м•°С): 2,04 х 3,2 = 6,528 м.

В то же время минераловатный утеплитель толщиной 14-15 см соответствует нормативу: λ = 0,044 Вт/м•°С х 3,2 = 0,14 м.

Для многослойных конструкций расчеты производятся аналогичным образом. При этом учитываются показатели каждого слоя.

Приведенные выше формулы, несмотря на некоторую простоту, позволят вам еще на стадии проектирования выбрать оптимальные материалы и толщину стены. Стоит добавить, что помимо теплопроводности материала есть еще и другие не менее важные показатели, поэтому подход к выбору материала должен быть комплексным.

Для самостоятельного расчета под конкретный регион рекомендуется воспользоваться следующими табличными данными:

Калькулятор расчета толщины стен онлайн

Данный калькулятор позволяет рассчитать ориентировочную толщину стен будущего дома. Для этого необходимо выбрать регион, где будет располагаться строение, температуру и материал, из которого будут изготовлены стены.

Онлайн калькулятор расчета толщины стен дома основан на СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Район проживания:
Майкоп
АлейскБарнаулБеляБийскЗмеиного рскКатандаКош-АгачОнгудайРодиноРубцовскСлавгородТогул
АрхараБелогорскБлаговещенскБомнакБратолюбовкаВыссаГошДамбукиЕрофей ПавловичЗавитинскЗеяНорский складОрогонПоярковоСвободныйСковородиноСредняя НожкаТыган-УрканТындаУнахаУсть-НожкаЧерняевоШимановскЭкиман
АрхангельскБорковскаяЕмецкКой насМезеньОнега
АстраханьВерхний Баскунчак
БелорецкДуванМелеузУфаЯнаул
Белгород
Брянск
БабушкинБаргузинБагдаринКяхтаМондыНижнеангарскСосново-ОзерскоеУкаитУлан-УдэХоринск
ВладимирМуром
ВолгоградКотельниковоЭльтон
ВологдаВытеграНикольскТотьма
Воронеж
ДербентМахачкала
ИвановоКинешма
АлыгджерБодайбоБратскВерхняя ГутараДубровскоеЕрбогаченЖигаловоЗимаИкаИлимскИркутскИчераКиренскМамаМарковоНаканноНевонНепаОрлингаПеревозПреображенкаСлюдянкаТайшетТулунУсть-Ордынский — Бурятский АО
Нальчик
Калининград
Элиста
Калуга
Апука — Корякский ДОИча — Корякский АОКлючиКозыревскКорф — Корякский АОЛопатка, мысМильковоНачикио. БерингаОссора — Корякский АОПетропавловск-КамчатскийСемлячикиСоболевоКронокиУкаОктябрьскаяУсть-Воямполка — Корякский АОУсть-КамчатскУсть-Хайрюзово
Черкесск
КемьЛоухиОлонецПанадыПетрозаводскРеболы
КемеровоКиселевскКондомаМариинскТайгаТисульТопкиУстъ-Кабырза
ВяткаНагорскоеСовали
ВендингаВоркутаОбъячевоПетруньПечораСыктывкарТроицко-ПечорскУсть-УсаУсть-ЦильмаУсть-ЩугорУхта
КостромаЧухломаШарья
КраснодарСочиТихорецк
АгатаАчинскБайкит — Эвенкийский АОБоготолБогучаныВанавара — Эвенкийский АОВельмоВерхнеимбатскВолочанкаДиксон — Таймырский АОДудинка — Таймырский АОЕнисейскЕссей — Эвенкийский АОИгаркаКанскКежмаКлючиКрасноярскМинусинскТаимбаТроицкоеТура — Эвенкийский АОТуруханскХатанга — Таймырский АОЧелюскин, мыс — Таймырский АОЯрцево
Ай-ПетриКлепининоСимферопольФеодосияЯлта
Курган
Курск
Липецк
СвирицаТихвинСанкт-Петербург
АркагалаБроховоМагаданОмсукчанПалаткаСреднеканСусуман
Йошкар-Ола
Саранск
ДмитровКашираМосква
Вайда-ГубаКандалакшаКовдорКраснощельеЛовозероМончегорскМурманскНиванкюльПулозероПялицаТериберкаТерско-ОрловскийУмбаЮкспор
АрзамасВыксаНижний Новгород
Новгород
БарабинскБолотноеКарасукКочкиКупиноКыштовкаНовосибирскТатарскЧулым
Исиль-КульОмскТараЧерлак
Оренбург
Оренбург
ЗеметчиноПенза
БисерПермь
АнучиноАстраханкаБогопольВладивостокДальнереченскМельничноеПартизанскПосьетПреображениеРудная ПристаньЧугуевка
Великие ЛукиПсков
МиллеровоРостов-на-ДонуТаганрог
Рязань
Самара
ВерхотурьеЕкатеринбургИвдель
Саратов
Александровск-СахалинскийДолинскКировскоеКорсаковКурильскМакаровНевельскНогликиОхаПогибиПоронайскРыбновскХолмскЮжно-КурильскЮжно-Сахалинск
Владикавказ
ВязьмаСмоленск
АрзгирСтаврополь
Тамбов
БугульмаЕлабугаКазань
БежецкТверьРжев
АлександровскоеКолпашевоСредний ВасюганТомскУсть-Озерное
Кызыл
Тула
Березово — Ханты-Мансийский АОДемьянскоеКондинское — Ханты-Мансийский АОЛеушиМарресаляНадымОктябрьскоеСалехардСосьваСургут — Ханты-Мансийский АОТарко-Сале — Ямало-Ненецкий АОТобольскТюменьУгутУренгой — Ямало-Ненецкий АОХанты-Мансийск — Ханты-Мансийский АО
ГлазовИжевскСарапул
СурскоеУльяновск
АянБайдуковБикинБираБиробиджанВяземскийГвасюгиГроссевичиДе-КастриДжаорэЕкатерино-НикольскоеКомсомольск-на-АмуреНижнетамбовскоеНиколаевск-на-АмуреОблучьеОхотскИм.
Полины ОсипенкоСизиманСоветская ГаваньСофийский ПриискСредний УргалТроицкоеХабаровскЧумиканЭнкэн
АбаканШира
Челябинск
Грозный
АгинскоеАкшаАлександровский ЗаводБорзяДарасунКалаканКрасный ЧикойМогочаНерчинскНерчинский ЗаводСредний КаларТунгокоченТупикЧараЧита
ПорецкоеЧебоксары
АнадырьМарковоОстровноеУсть-ОлойЭньмувеем
АлданАллах-ЮньАмгаБатамайБердигястяхБуягаВерхоянскВилюйскВитимВоронцовоДжалиндаДжарджанДжикимдаДружинаЕкючюЖиганскЗырянкаИситьИэмаКрест-ХальджайКюсюрЛенскНагорныйНераНюрбаНюяОймяконОлекминскОленекОхотский ПеревозСангарСаскылахСреднеколымскСунтарСуханаСюльдюкарСюрен-КюельТокоТоммотТомпоТуой-ХаяТяняУсть-МаяУсть-МильУсть-МомаЧульманЧурапчаШелагонцыЭйикЯкутск
ВарандейИндигаКанин НосКоткиноНарьян-МарХодоварихаХоседа-Хард
Ярославль

Комфортная температура в доме:


Материал стен:


ЖелезобетонБетон на гравии или щебне из природного камняКерамзитобетонГазо- и пенобетон, газо- и пеносиликат
Глиняный обыкновенный на цементно-песчаном раствореСиликатный на цементно-песчаном раствореКерамический пустотный на цементно-песчаном растворе
Сосна и ельДуб
Маты минераловатные прошивныеПлиты из стеклянного штапельного волокна
Медь (для сравнения)Стекло оконное


HEBEL D400HEBEL D500YTONG D400H+H D400H+H D500H+H D600КЗСМ D400КЗСМ D500КЗСМ D600EuroBlok D400EuroBlok D500EuroBlok D600ЭКО D400ЭКО D500ЭКО D600Bonolit D300Bonolit D400Bonolit D500Bonolit D600AeroStone D400AeroStone D500AeroStone D600AeroStone D700AeroStone D800ГРАС D400ГРАС D500ГРАС D600
BRAER Ceramic Thermo 14,3 NFBRAER Ceramic Thermo 12,4 NF BRAER BLOCK 44BRAER Ceramic Thermo 10,7 NFBRAER Ceramic Thermo 10,7 NF тип 2 BRAER BLOCK 25Porotherm 8Porotherm 12Porotherm 25Porotherm 38Porotherm 44Porotherm 51Porotherm 51 Premium
ISOVER ОптималROCKWOOL ЛАЙТ БАТТСROCKWOOL КАВИТИ БАТТСROCKWOOL РОКФАСАДKNAUF Insulation Термо Плита 037KNAUF Insulation Фасад Термо Плита 034KNAUF Insulation Фасад Термо Плита 032
ISOVER Классик Плюс


Рассчитать

Как рассчитать толщину утеплителя для стен, крыши, пола, мансарды

На чтение 8 мин. Просмотров 1.1k. Опубликовано

Предисловие. Для утепления дома выбирают материал, имеющий низкую теплопроводность и высокое сопротивление. Чтобы определить теплосопротивление стройматериала, достаточно знать коэффициент теплопроводности и его толщину. В этой статье мы расскажем, как рассчитать толщину утеплителя для кровли, мансарды, стен и пола в доме, чтобы зимой в нем было тепло и комфортно.

Для чего необходим расчет толщины утеплителя

Комфортное проживание в доме предусматривает поддержание оптимальной температуры в помещении, особенно зимой. При возведении здания следует помнить о тепловой изоляции, следует грамотно подобрать и рассчитать толщину утепления для стен, кровли, пола и мансарды. Любой материал – кирпич, дерево, пеноблок или минвата имеет свое значение теплопроводности и теплосопротивления.

Теплый дом – мечта каждого хозяина

Под теплопроводностью принимают способность материала проводить тепло. Данная величина определяется в лабораторных условиях, а полученные данные приводятся производителем на упаковке либо. Теплосопротивление материала – величина обратная теплопроводности. Материал, который хорошо проводящий тепло имеет низкое сопротивление теплу и требует утепление.

При возведении здания следует помнить о качественной тепловой изоляции. Если в стенах дома или в других конструкциях при строительстве были допущены ошибки, то возможно появление мостиков холода – участков по которым быстро уходит тепло из дома. В этих местах возможно появление конденсата, а в дальнейшем и образование плесени, если не принять во время меры по утеплению.

Как рассчитать толщину утеплителя для стен

Теплопроводность различных материалов

1. Определите конструкцию и отделку наружных стен дома (внутренней и внешней). Схема отделки зависит от ваших предпочтений, решения экстерьера и интерьера строения. Отделка добавляет в толщину стены дома несколько слоев.

2. Рассчитайте теплосопротивление выбранной стены (Rпр.) Величину можно найти по формуле, при этом нужно знать материал стены и его толщину:

Rпр.=(1/α (в))+R1+R2+R3+(1/α (н)),

где R1, R2, R3 – сопротивление теплопередачи слоя, α(в) – коэффициент теплоотдачи внутренней поверхности стены, α(н) – коэффициент теплоотдачи наружной поверхности стены.

3. Рассчитайте минимальное значения сопротивления теплопередачи (Rмин.) для вашей климатической зоны по формуле R=δ/λ, δ, где δ – толщина слоя материала в метрах, λ – теплопроводность материала (Вт/м*К). Теплопроводность (способность материала обмениваться теплом с окружающей средой) можно узнать на упаковке материала или определить по таблице теплопроводности минваты или другого материала, например, для пенопласта ПСБ-С 15 она равна 0,043 Вт/м, для минваты плотностью 200 кг/м3 – 0,08 Вт/м.

Чем выше коэффициент теплопроводности, тем материал холоднее. Наивысшая теплопроводность у металла, мрамора, минимальная – у воздуха. Материалы, в основе которых лежит воздух, являются теплыми, например, 40 мм пенопласта равны по теплопроводности 1 метру кирпичной кладки. Коэффициент имеет постоянное значение, его можно найти в справочнике ДБН В.2.6-31:2006 (Тепловая изоляция строений).

4. Сравните Rмин. с Rпр. и найдите разность ΔR. Если в результате вашего расчета Rмин.меньше или равно Rпр., то утепление стен дома не нужно, так как существующие слои обеспечивают нормативную теплоизоляцию строения. Когда же Rмин. больше Rпр., то определите разницу между ними, для этого вычтите из большего значения меньшее ?R= Rмин.- Rпр.

5. Подберите толщину утеплителя согласно величине ΔR. Выбранный утеплитель должен обеспечить для конструкции недостающее сопротивление теплопередачи. Выбирая материал, следует помнить о его характеристиках: коэффициент теплопроводности, плотность и класс горючести, коэффициент водопоглощения. Далее рассмотрим на примерах, как рассчитать толщину утеплителя для разных конструкций, но вы можете без проблем провести расчет теплопроводности стены онлайн калькулятор на нашем сайте.

Как рассчитать утепление для кирпичных стен

Утепление кирпичных стен под штукатурку

Представим, что дом имеет стены, выполненные из пенобетона плотностью 300 (0,3 м), коэффициент теплопроводности материала составляет 0,29. Делим 0,3 на 0,29, и получаем значение в итоге 1,03.

Как рассчитать толщину утеплителя для стен, позволяющую обеспечить комфортное проживание в доме? Для этого необходимо знать минимальное значение теплосопротивления в городе или области, где расположено утепляемое строение. Далее от этого значения нужно отнять полученное 1,03 и в результате станет известно сопротивление теплу, которым должен обладать утеплитель.

Если стены состоят из нескольких материалов – бетон, кирпич, слой штукатурки и т.д., то следует просуммировать их показатели теплосопротивления. Толщина утеплителя стен рассчитывается с учетом сопротивления теплопередаче используемого материала (R). Для нахождения параметра следует узнать величину ГОСП (градусосутки отопительного периода) по формуле:

tB отражает температуру внутри помещения. Согласно установленным нормам она находится в пределах +20-22°С. Средняя температура воздуха – tот, число дней отопительного периода в календарном году – zот. Эти значения приведены в «Строительной климатологии» СНиП 23-01-99. Внимание следует уделить продолжительности и температуре в отопительном периоде, когда среднесуточная t≤ 8°С.

Когда теплосопротивление каждого материала будет определена, следует узнать какой должна быть толщина утеплителя потолка, пола, стен, кровли дома. Каждый материал «многослойного пирога» конструкции имеет свое тепловое сопротивление R и рассчитывается по формуле:

RТР = R+ R+ R… Rn,

Где под n понимают число слоев, при этом тепловое сопротивление определенного материала равняется отношению его толщины (δs) к теплопроводности (λS).

R = δSS

Как рассчитать утепление стен из пеноблока

Утепление стен из пеноблока минватой

К примеру, в возведении конструкции используется пеноблок D600 толщиной 30 см, в роли теплоизоляции выступает базальтовая вата URSA плотностью 80-125 кг/м3, в качестве отделочного слоя – кирпич пустотелый плотностью 1000 кг/м3, толщиной 12 см.

Коэффициенты теплопроводности приведенных выше материалов указываются в сертификатах.

Теплопроводность бетона 0,26 Вт/м*0С

Теплопроводность утеплителя – 0,045 Вт/м*0С

Теплопроводность кирпича – 0,52 Вт/м*0С.

Определяем R для каждого материала.

Теплосопротивление газобетона – RГ = δ = 0,3/0,26 = 1,15 м2*0С/Вт
Теплосопротивление кирпича – RК = δSК = 0,12/0,52 = 0,23 м2*0С/В.

Зная, что стена состоит из 3-х слоев, находим RТР= RГ + RУ + RК, и находим теплосопротивление утеплителя RУ = RТР– RГ — RК.

Представим, что строительство происходит в регионе, где RТР(220С)  – 3,45 м2*0С/Вт. Вычисляем RУ = 3,45 — 1,15 – 0,23 = 2,07 м2*0С/Вт. Теперь мы знаем, каким сопротивлением должна обладать базальтовая вата или другой утеплитель. Толщина утеплителя для стен будет определяться по формуле:

δS = RУ х λ = 2,07 х 0,045 = 0,09 м или 9 см.

Если представить, что RТР(180С) = 3,15 м2*0С/Вт, то RУ = 1,77 м2*0С/Вт, а δS = 0,08 м или 8 см.

Как рассчитать толщину утепления мансарды

Утепление чердака и мансарды в доме

Расчет данного параметра производится по аналогии с определением толщины утеплителя стен дома. Для термоизоляции мансардных помещений лучше использовать материал теплопроводностью 0,04 Вт/м°С. Для чердаков толщина торфоизолирующего слоя не имеет большого значения. Чаще всего для утепления скатов крыш используют рулонные, матные или плитные теплоизоляции.

Толщина утеплителя для потолка рассчитывается по приведенному выше алгоритму. От того насколько грамотно будет определены параметры изоляционного материала, зависит температура в доме зимой. Опытные строители советуют увеличивать толщину утеплителя кровли до 50% относительно проектной. Если используются засыпные материалы, время от времени их необходимо разрыхлять.

Толщина утеплителя в каркасном доме

В роли теплоизоляции может выступать каменная вата, эковата и сыпучие материалы. Расчет толщины утеплителя в каркасном доме простой, потому как его конструкция предусматривает наличие утеплителя. Теплосопротивление стен дома в Москве должно составлять R=3,20 м2*0C/Вт. Теплопроводность утеплителя представлена в таблицах или в сертификате на товар.

Для ваты оно составляет λут = 0,045 Вт/м*0С. Толщина утеплителя для каркасного дома определяется по формуле:

δут = R х λут = 3,20 х 0,045 = 0,14 м

Плиты минваты выпускаются толщиной 10 см и 5 см. В данном случае потребуется укладка минваты в два слоя.

Как рассчитать толщину утепления пола

Монтаж утеплителя под полом дома

Прежде чем приступить к расчетам следует знать, на какой глубине располагается пол относительно уровня земли. Также следует иметь представление о температуре грунта зимой на глубине. Данные можно взять из таблицы зависимости температуры грунта от глубины и месторасположения:

Сначала необходимо определить ГСОП, затем вычислить сопротивление теплопередаче, определить толщину слоев пола (к примеру, армированный бетон, цементная стяжка по утеплителю, напольное покрытие). Далее определяем сопротивление каждого из слоев и суммируем полученные значения. Таким образом, мы узнаем теплосопротивление всех слоев пола, кроме утеплителя.

Чтобы найти толщину утепления, из нормативного теплосопротивления отнимем общее сопротивление слоев пола за исключением изоляционного материала. Толщина утеплителя для пола в доме вычисляется путем умножения теплосопротивления утеплителя на коэффициент теплопроводности.

Расчет толщины утеплителя для стен

Каждый, кто строит собственный дом, хочет, чтобы в нем было тепло. Добиться это можно несколькими способами: построить толстые стены, сделать хорошее утепление или хорошо отапливать дом.

На практике все эти способы используют вместе, но с экономической точки зрения, больший приоритет имеет утепление дома, а точнее увеличение толщины утеплителя.

Как же рассчитать необходимую толщину стен и утеплителя, чтобы дом был не только крепким, но теплым.

Наш расчет будет состоять из двух основных этапов:

  1. Нахождения сопротивлением теплопередаче стен, которое необходимо для дальнейших вычислении.
  2. Подбор необходимой толщины утеплителя в зависимости от конструкции и материала стен.

В начале, предлагаем посмотреть небольшое видео, в котором эксперт подробно рассказывает для чего нужно закладывать утеплитель в наружные стены кирпичного дома и какой вид утеплителя при этом использовать.

Сопротивлением теплопередаче стен

Для нахождения этого параметра используем СП 50.13330.2012 «Тепловая защита зданий» который можно скачать на нашем сайте (ссылка).

В пункте 5 «Тепловая защита зданий» представлены несколько формул, которые помогут нам рассчитать толщину утеплителя и стен. Для того чтобы это сделать существует параметр, называемый сопротивлением теплопередаче и обозначаемый буквой R. Он зависит от необходимой температуры внутри помещения и климатических условий данного города или района.

В общем случает он рассчитывается по формуле RТР = a х ГСОП + b.

Согласно таблице 3, значения коэффициентов a и b для стен жилых зданий равняется 0,00035 и 1,4 соответственно.

Осталось только найти величину ГСОП. Расшифровывается она как градусо-сутки отопительного периода. С этим значением придется немного повозится.

Формула для расчета ГСОП = (tВtОТ) х zОТ.

В данной формуле tВ — это температура, которая должна быть внутри помещения. По нормам она равняется 20-220С.

Значение параметров tОТи zОТ означают среднюю температуру наружного воздуха и количество суток отопительного периода в году. Узнать их можно в СНиП 23-01-99 «Строительная климатология». (ссылка).

Если посмотрите на данный СНиП, то увидите большую таблицу в самом начале, где для каждого города или района приведены климатические параметры.

Нас будет интересовать колонка, в которой написано «Продолжительность и средняя температура воздуха периода со средней суточной температурой воздуха ≤ 80С».

Пример расчета параметра R

ТР

Для того, чтобы все стало более понятным, давайте рассчитаем сопротивлением теплопередаче стен (RТР) для дома построенного в г. Казань.

Для этого у нас есть две формулы:

RТР = a х ГСОП + b,

ГСОП = (tВ-tОТ) х zОТ

Сначала рассчитаем ГСОП. Для этого ищем г. Казань в правой колонке СНиП 23-01-99.

Находим по таблице, что средняя температура tОТ = — 5,20С, а продолжительность zОТ = 215сут/год.

Теперь нужно определится, какая температура воздуха внутри помещения для вас комфортна. Как было написано выше оптимальным считается tВ = 20-220С. Если вы любите более прохладную или более теплую температуру, то при расчете ГСОП для значение tВ может быть другим.

Итак, подсчитаем ГСОП для температуры tВ = 180С и tВ = 220С.

ГСОП18 = (180С-(-5,20С) х 215 суток/год = 4988.

ГСОП22 = (220С-(-5,20С) х 215 суток/год = 5848

Теперь найдем сопротивление теплопередаче. Как мы уже знаем коэффициенты a и b для стен жилых зданий, согласно таблице 3 из СП 50.13330.2012 равняются 0,00035 и 1,4.

RТР(180С) = 0,00035 х 4988 + 1,4 = 3,15 м2*0С/Вт, для 180С внутри помещения.

RТР(220С) = 0,00035 х 5848 + 1,4 = 3,45 м2*0С/Вт, для 220С.

Таким сопротивление, должна обладать стена вместе с утеплителем, для того чтобы в доме были минимальные теплопотери.

Итак, необходимые начальные данные мы получили. Теперь перейдём ко второму этапу, к определению толщины утеплителя.

Расчета толщины утеплителя

Надеемся вам хватило желания дочитать предыдущий раздел нашей статьи. Теперь попробуем рассчитать толщину утеплителя в зависимости от материала и толщины стен.

Каждый материал, входящий в многослойный пирог стены, обладает собственным тепловым сопротивлением R. Так вот, наша задача, состоит в том, чтобы сумма всех сопротивлений материалов, входящих в конструкцию стены, равнялась тепловому сопротивлению RТР,которое мы рассчитывали в предыдущейглаве, т.е.:

RТР = R1 + R2 + R3 Rn, где n количество слоев.

Тепловое сопротивление отдельного материала R равняется отношению толщины слоя (δs) к теплопроводности (λS).

R = δSS

Что бы дальше не путать вас формулами, рассмотрим три примера.

Примеры расчета толщины утеплителя для стен из кирпича и газобетона

Пример 1. Стена из газобетонных блоков D600 толщиной 30 см, утепленная снаружи каменной ватой плотностью 80-125 кг/м3 , а снаружи обложена керамическим пустотелым кирпичом плотностью 1000 кг/м3. Строительство велось в г.Казань.

Для дальнейшего нахождения толщины утеплителя, нам понадобятся значения теплопроводности материалов λS. Эти данные должны присутствовать в сертификате к материалам.

Если по каким-либо причинам их нет, то посмотреть их можно в Приложение С к СП 50.13330.2012, который мы использовали ранее.

λ = 0,14 Вт/м*0С — теплопроводность газобетона;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λ = 0,52 Вт/м*0С – теплопроводность кирпича.

Далее вычисляем значение R для каждого материала, зная, что толщина слоя газобетона δ = 30 см, а наружная кладка в полкирпича равняется δ = 12 см.

RГ = δ = 0,3/0,14 = 2,14 м2*0С/Вт — тепловое сопротивление газобетона;

RК = δ = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича.

Т.к. наша стена состоит из трех слоев, то верно будет уравнение:

RТР= RГ + RУ + RК,

тогда RУ = RТР— RГ — RК

В предидущей главе мы находили значение RТР(220С) для г. Казань. Используем его для наших вычислений.

RУ = 3,45 — 2,14 – 0,23 = 1,08 м2*0С/Вт.

Таким образом мы нашли, каким тепловым сопротивлением должен обладать утеплитель. Для нахождения толщины утеплителя воспользуемся формулой:

δS = RУ х λ = 1,08 х 0,045 = 0,05 м.

Мы получили, что для заданных условий достаточно утеплителя толщиной 5 см.

Если мы возьмём значение RТР(180С) = 3,15 м2*0С/Вт, то получим:

RУ = 3,15 — 2,14 – 0,23 = 0,78 м2*0С/Вт.

δS = RУ х λSУ = 0,78 х 0,045 = 0,035 м

Как видите, толщина утеплителя изменилась всего на полтора сантиметра.

Пример 2. Рассмотрим пример, когда вместо газобетонных блоков, уложен силикатный кирпич плотностью 1800 кг/м3. Толщина кладки при этом 38 см.

По аналогии с предыдущими вычислениями находим значения теплопроводности по таблице:

λSК1 = 0,87 Вт/м*0С — теплопроводность силикатного кирпича плотностью 1800 кг/м3;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λSК2 = 0,52 Вт/м*0С – теплопроводность кирпича плотностью 1000 кг/м3.

Далее находим значения R:

RК1 = δSК1SК1 = 0,38/0,87 = 0,44 м2*0С/Вт — тепловое сопротивление кирпича 1800 кг/м3;

RК2 = δSК2SК2 = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича 1000 кг/м3.

Находим тепловое сопротивление утеплителя:

RУ = 3,45 – 0,44 – 0,23 = 2,78 м2*0С/Вт.

Теперь вычисляем толщину утеплителя:

δS = RУ х λ = 2,78 х 0,045 = 0,12 м.

Т.е. для данных условий достаточно толщины утеплителя 12 см.

Пример 3. В качестве наглядного примера, говорящем о важности утепления, рассмотрим стену состоящую только газобетона D600.

Зная теплопроводность газобетонных блоков, λ = 0,14 Вт/м*0С, можем сразу вычислить необходимую толщину стен т.к. стена однородна.

δS = RТР х λ = 3,45 х 0,14 = 0,5 м

Мы получаем, чтобы соблюдать все нормы СНиП, мы должны выложить стену толщиной 0,5 м.

В таком случае можно пойти двумя путями, сделать стену сразу необходимой толщины или построить стену потоньше и дополнительно утеплить.

Первый вариант нам кажется более надежным и менее затратным, потому что работ по монтажу утеплителя нет. Второй вариант больше подходит для уже построенных домов.

Все эти примеры, показывают, как зависит толщина утепление от материала стен. По аналогии с ними вы можете проделать расчёты для любого типа материала.

Видео «Утепление стен»

В заключении, предлагаем вам посмотреть пару видеороликов, которое будет полезно при выборе толщины утеплителя для стен дома построенного из пенобетона и газобетона.

Расчет толщины наружной стены по СНиП

Для условий утепления стен жилого здания в Пермском крае (температура воздуха в помещении + 21 oС), требуемое сопротивление теплопередаче составляет
     Rreq = 3.56 м2oС/Вт.

Сопротивление теплопередаче ограждающей конструкции должно быть не ниже требуемого и определяется по формуле:
     R0 = 1/aint + R + 1/aext,
где
  aint – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций;
  aext – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции;
  R – термическое сопротивление ограждающей конструкции, определяемое по формуле:
     R = d1 / l1 + d2 / l2 + d3 / l3 + ⋯,
где
  d — толщина слоя;
  l — расчетный коэффициент теплопроводности материала слоя.

Коэффициент теплопроводности материала слоя принимается по следующим данным.

Утеплитель — минеральная вата

Согласно производителю минераловатной теплоизоляции
Коэффициент теплопроводности:

  • Минеральная вата — 0.04 Вт/м/oС

Утеплитель — гранулированное пеностекло

Согласно протокола испытаний на теплопроводность
Коэффициент теплопроводности:

  • Гранулированное пеностекло — 0.048 Вт/м/oС

Газобетонные стены

Согласно СП 23-101-2004 «ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЙ»:
Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0.20 Вт/м/oС — приложение Д

Согласно СТО 501-52-01-2007 «ПРОЕКТИРОВАНИЕ И ВОЗВЕДЕНИЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ С ПРИМЕНЕНИЕМ ЯЧЕИСТЫХ БЕТОНОВ В РОССИЙСКОЙ ФЕДЕРАЦИИ»:
Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0.20 Вт/м/oС — табл.4.7
  • Кладка блоков на клею — 0.23 Вт/м/oС — табл. 7.1
  • Кладка блоков на растворе — 0.30 Вт/м/oС — табл 7.1

Согласно производителю газобетонных блоков
Коэффициент теплопроводности:

  • Газобетонные блоки D500 — 0.148 Вт/м/oС

Даже при условии, что современные выпускаемые газобетонные блоки имеют более низкий коэффициент теплопроводности по сравнению с приведенными нормативными документами, минимальный коэффициент теплопроводности кладки стен из газобетонных блоков с учетом кладки на клей следует принимать не менее 0.175 Вт/м/oС.

Пеностеклобетонные стены

Согласно немецкому аналогу пеностеклобетонных блоков Dennert Calimax 11
Коэффициент теплопроводности:

  • Пеностеклобетонные стены — 0.11 Вт/м/oС

Назад к сравнению стен

понятный алгоритм расчета с примером

Одним из важнейших этапов проектирования загородного, дачного дома или другой является расчет толщины стены. Для жилых зданий этот параметр очень важен. Ведь неверные расчёты могут привести к тому, что дом будет промерзать. Кроме того, можно ошибиться и возведя слишком толстые стены. В этом случае траты на ненужный объем материалов будут абсолютно напрасными. О том, какой должна быть толщина стен и как ее грамотно рассчитать, мы и поговорим в этой статье.

Для чего нужны расчеты?

Выполнение точных расчётов позволит вам максимально точно определить, какой толщины стены должны быть в вашем доме. Сейчас очень популярен расчет толщины стен онлайн, с помощью специальных автоматизированных калькуляторов.

Но нужно помнить, что такой расчет будет примерным. Кроме того, обычно калькуляторы выдают общую толщину стены. В то время как любая стенка всегда состоит из нескольких слоев. И очень важно понимать, как рассчитывается толщина каждого слоя в отдельности.

О чего зависит толщина стенок?

Этот показатель в первую очередь определяется климатом региона, в котором строится дом. Важнейшее значение в расчетах имеет такой показатель, как уровень сопротивления теплоотдаче. Значения данного показателя в разных городах буду различаться. Чем холоднее климат, тем выше требуемый минимальный порог теплосопротивления стен.

Сопротивление теплопередаче регламентируется нормативными документами и имеет постоянное значение в рамках каждого региона.

Полную таблицу значений требуемого сопротивления теплопередаче по городам РФ можно скачать здесь Таблица теплосопротивлений.

Еще одним важным фактором является материал стен. Значение имеет теплопроводность всех материалов, входящих в состав так называемого «пирога».

Значения теплопроводности всех возможных стройматериалов можно найти в Таблица теплопроводности материалов.

Алгоритм расчета

Расчет толщины стены не так уж и сложен, как может показаться на первый взгляд. Мы постараемся избежать сложных формул и объяснить основные принципы расчетов на конкретном примере.

Допустим, мы строим дом в Барнауле. Из таблицы берем показатель сопротивления теплопередаче для Барнаула. Это 3,54 Вт/м2*С.

Дом будет построен из газобетона, фасад отделан облицовочным кирпичом, внутри – гипсовая штукатурка.

Здесь нужно понимать, что толщина стены складывается из толщины всех слоев, как и сопротивление теплоотдаче. Теплопроводность у всех материалов разная. И уменьшая один из слоев, придется увеличить другой.

Итак, предположим, что слой кирпичной облицовки в толщину составляет 12см. Теплопроводность облицовочного кирпича – 0,93 Вт/м2*С.

Сопротивление теплопередаче рассчитывается путем деления толщины материала (в метрах) на значение его теплопроводности.

Итак, рассчитаем теплосопротивление кирпичного слоя:

0,12/0,93 = 0,13 Вт/м2*С.

Внутренний слой гипсовой штукатурки будет толщиной 3см. Теплопроводность – 0,3 Вт/м2*С.  Аналогичным образом рассчитаем сопротивление теплоотдаче для этого слоя:

0,03/0,3 = 0,1 Вт/м2*С.

Теперь остается рассчитать толщину газобетона. Известно, что его теплопроводность равна 0,14 Вт/м2*С. Чтобы понять какое теплосопротивление должна оказывать газобетонная кладка, вычтем из показателя минимального порога сопротивления теплопередаче по региону все рассчитанные значения теплосопротивлений наших материалов:

3,54 – 0,13 – 0,1 = 3,31 Вт/м2*С.

Толщина материала определяется путем умножения полученного значения на его теплопроводность:

3,31 * 0,14 = 0,46 м.

Таким образом, минимальная толщина нашей газобетонной кладки равна 46 см.

Учитывая, что блоков такой толщины не существует, нам придется взять блоки большей толщины, слегка переплатив за объем материала. Либо купить изделия с меньшей толщиной, предусмотрев при этом утеплительный слой. В таком случае толщина газобетона будет уже заданной величиной и придется аналогичным образом рассчитывать толщину утеплителя.

Онлайн калькулятор: Толщина стенки трубы

Толщина стенки трубы

Формула

Барлоу используется для расчета давления в трубе с учетом ее диаметра, толщины стенки и кольцевого напряжения (в материале трубы). Таким образом, его можно использовать для вычисления любого из этих параметров в зависимости от трех других.
Помимо некоторых других упрощений, важное теоретическое допущение, сделанное для использования формулы Барлоу, состоит в том, что стенка трубы ведет себя как мембрана (или тонкостенная труба), что означает, что кольцевое напряжение в стенке трубы распределяется равномерно по всей поверхности. его толщина.Внутри стенки трубы нет моментов любого типа. Одним из параметров, обеспечивающих поведение мембраны в стенке трубы, является отношение диаметра к толщине (D / t), которое должно быть больше или равно 20 , хотя некоторые авторы считают 16 .
Однако решение о том, использовать ли формулу или нет, обычно основывается не на геометрии ее сечения (отношение D / t), а на обслуживании трубы, учитывая тип жидкости, промышленность и физические условия, такие как, например, , ASME (Американская ассоциация инженеров-механиков) делает.

  • P: Давление в трубе
  • S: Обруч
  • т: Толщина стенки трубы
  • D: Внешний диаметр
Расчеты по формуле Барлоу
Точность расчетов

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Следуя этим критериям обслуживания, код ASME B31.4 (Трубопроводные системы транспортировки жидкостей и шламов) применяет формулу следующим образом:

  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки по формуле Барлоу согласно ASME B31.4
Точность вычисления

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Ссылка сохранить Сохранить расширение Виджет

Код

ASME B31.8 (Системы газоснабжения и распределения газа) применяет его следующим образом:

и для расчета минимальной толщины стенки с учетом припуска:

это должно быть выражено так:

  • F: Расчетный коэффициент
  • E: Коэффициент продольного шарнира
  • T: Температурный коэффициент снижения номинальных характеристик
  • A: Допуск на резьбу, нарезание канавок, коррозию
Давление в трубе по формуле Барлоу согласно ASME B31.8
Расчетный коэффициент, (безразмерный) 0,80 для класса размещения 1, раздела 10,72 для класса местоположения 1, раздела 20.60 для класса местоположения 20,50 для класса местоположения 30,40 для класса размещения 4 Коэффициент продольного соединения (безразмерный) 1,00 для бесшовных труб ASTM A531. 00 для трубы, сваренной сопротивлением ASTM A53 0,60 для трубы ASTM A53, сваренной встык: труба непрерывного шва 1,00 для трубы ASTM A106 бесшовная 0,80 для трубы электросварной сваркой плавлением ASTM A134 1,00 для трубы электросварной сварки ASTM A135 0.60 для трубы API 5L, сваренной встык с печью, 0,80 для трубы, сваренной встык, ASTM A1390,80 для трубы, сваренной методом спиральной сварки ASTM A211, 1,00 для бесшовной трубы ASTM A333, 1,0 для трубы, сваренной сопротивлением ASTM A333, 1,0 для трубы, сваренной сопротивлением ASTM A381, с двойной погружной сваркой Дуговая сварная труба0,80 для электросварной сварки ASTM A671 классов 13,23,33,43,53 Труба 1,00 для электросварной сварки ASTM A671 классов 12,22,32,42,52 Труба0,80 для электросварки плавлением ASTM A672 Труба классов 13,23,33,43,531.0 для ASTM A672, сваренная электросваркой плавлением, трубы классов 12,22,32,42,521.00 для бесшовной трубы API 5L 1,00 для трубы электросварной сварки API 5L 1,00 для трубы API 5L, сваренной оплавлением оплавлением 1,00 для трубы, сваренной под флюсом API 5L для 300 ° F) 0,933 (для 350 ° F) 0,900 (для 400 ° F) 0,867 (для 450 ° F) Точность вычисления

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Код

ASME B31.9 (Строительные трубопроводы) применяет его следующим образом:

  • E: Коэффициент продольного шарнира
  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки трубы по формуле Барлоу согласно ASME B31.9
Коэффициент продольного соединения, (безразмерный) 0,6 (для трубы под сварку встык или непрерывной сварки) 0,75 (для трубы со спиральным швом ASTM A211) 0,8 (для трубы с одинарным стыковым сварным швом) 0,85 (для трубы с контактным сварным швом) 0,9 (для трубы с двойным швом) труба под сварку встык) 1,00 (для стыкового шва со 100% радиографическим исследованием трубы) Точность расчета

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Link save Сохранить расширение Виджет

С другой стороны, в отличие от предположения о тонкой стенке или теории мембран, существуют формулы для изогнутой пластины или толстостенной трубы, полученные из теории Ламе, использование которых более сложно, иногда с итерациями, и требует осторожного подхода, например, например, в ASME B 31.1 (силовые трубопроводы), ASME B 31.3 (технологические трубопроводы) и ASME B 31.5 (холодильные трубопроводы и компоненты теплопередачи).

Расчет толщины оболочки

  • Вы здесь:
  • Дома
  • Расчет толщины оболочки

Расчет толщины оболочки

Корпус статического оборудования, находящегося под давлением, во многих случаях имеет цилиндрическую форму.Более сложное оборудование, такое как ректификационные колонны, также может иметь коническую или более коническую часть. Однако резервуары для сжиженного нефтяного газа обычно имеют сферический корпус.

Страница расчета толщины оболочки предназначена для расчета толщины стенок цилиндра, конуса и сферы под давлением без отверстий. Расчет не принимает во внимание дополнительное напряжение вокруг отверстий для сопел и, следовательно, является основным расчетом прочности. Коды расчета — ASME, Голландские правила и EN Euronorm.

На рисунке ниже показаны размеры, использованные в расчетах.Для расчета также требуется, чтобы пользователь ввел значение напряжения в зависимости от материала. На странице расчета есть ссылка на страницу свойств материала, но значения на страницах материалов приведены только для справки и не должны использоваться в реальных расчетах.

Расчет толщины стенки цилиндра
в соответствии с голландскими правилами

Допустимое напряжение f = f 1 = 0.67 * R e (T d ) = 0,67 * 175,2 = 117,38 Н / мм 2
Расчетная толщина d = d n — Ca — тол = 8,2 — 1 — 1,03 = 6,17 мм
Цилиндр:
Внутренний диаметр D i = D e — 2 * d = 219.1-2 * 6,17 = 206,76 мм
Требуемая толщина стенки
0,5 * 219,1
(2 * 1 * 117,384 + 0,5)
=
0.47 мм
Требуемая номинальная толщина d rn = d r + Ca + tol = 0,466 + 1 + 1,03 = 2,50 мм
Требуемое уменьшение прочности
0.5 * (206,76 + 6,17)
2 * 6,17 * 117,384
=
0,07350
Расчет толщины, d> d r ? d n = 8,2 мм в норме
Вес 96.22 кг
Закрытый том 0,073 м 3

Расчет толщины стенки трубы (ASME B31.3)

Результаты

NPS [[getResult ([‘NPS’])]]
Внутренний диаметр d [[getResult ([‘d’])]] [[gUL (‘длина’)]]
Внешний диаметр D [[getResult ([‘D’])]] [[gUL (‘длина’)]]
Номинальная толщина т н [[getResult ([‘tn’])]] [[gUL (‘длина’)]]
Undertol.толщина т н * ут / 100 [[getResult ([‘t_ut’])]] [[gUL (‘длина’)]]
Минимальная толщина Т = t n (1-ут / 100) [[getResult ([‘T’])]] [[gUL (‘длина’)]]
Допустимое напряжение S [[getResult ([‘S’])]] [[gUL (‘давление’)]]
Коэффициент Y Y [[getResult ([‘Y’])]]
Фактор качества сварного соединения E [[getResult ([‘E’])]]
Расчетная толщина давления т [[getResult ([‘t’])]] [[gUL (‘длина’)]]
Общий механический припуск c = ca + h [[getResult ([‘c’])]] [[gUL (‘длина’)]]
Требуемая толщина т м [[getResult ([‘tm’])]] [[gUL (‘длина’)]]
Приемлемость отбора Т> т м [[getResult ([‘приемлемость’])]]

Как: рассчитать минимальную требуемую толщину стенки для трубки

При расчетах по кодам ASME с использованием цилиндрических компонентов для энергетики 3-го класса вам потребуется знать, как рассчитать минимальную требуемую толщину стенки для труб.Трубки, для которых вам может потребоваться определить минимальную толщину, могут быть, помимо прочего, трубами пароперегревателя или трубами водотрубного котла. Этот пост помогает объяснить материал, освещенный в:

Все указанные ниже номера страниц взяты из кода 2007 ASME для котлов и сосудов высокого давления .

Формула

Чтобы определить минимальную требуемую толщину трубок, воспользуйтесь формулой, приведенной в коде ASME «Котлы и сосуды высокого давления» PG-27 «Цилиндрические компоненты под внутренним давлением».В частности, PG-27.2.1 на стр.8 .

PG-27.2.1 Трубки — до 5 дюймов включительно. (125 мм) внешний диаметр . Важно помнить об этом моменте, так как любой кусок материала с наружным диаметром более 125 мм теперь считается трубопроводом, и необходимо использовать уравнение, приведенное в PG-27.2.2 стр. 10.

Формула для расчета минимально необходимой толщины:

Переменные формулы

Символы, используемые в формулах PG-27, содержатся в параграфе PG-27.3 page 10 и определяются следующим образом.

C = Минимальный допуск на резьбу и стабильность конструкции (мм) (PG-27.4, примечание 3) стр.11

D = или O.D. is Наружный диаметр цилиндра (мм) «В данном случае трубка»

E = Эффективность продольных сварных швов или связок между отверстиями, в зависимости от того, что ниже (допустимые значения E перечислены в PG-27.4, примечание 1) стр. 11

e = коэффициент толщины расширенных концов трубы (мм) (см. PG-27.4, примечание 4) стр.11

P = Максимально допустимое рабочее давление «Манометрическое давление» (МПа) (см. PG-21, относится к избыточному давлению)

R = Внутренний радиус цилиндра (мм) «В данном случае трубка»

S = Максимально допустимое значение напряжения при рабочей температуре металла (Раздел II, Часть D, Таблица 1A. См. PG-27.4, примечание 2) стр. 11. При определении максимально допустимого значения напряжения необходимо проверить ( Материалы пластин PG-6) стр. 4 и (материалы котельных труб PG-9) стр. 5 перед началом расчетов, поскольку эта информация определит правильную таблицу напряжений для использования, указав, является ли материал углеродистой сталью или легированной сталью.

t = минимальная требуемая толщина (мм) (см. PG-27.4, примечание 7) стр.12

y = температурный коэффициент (см. PG-27.4, примечание 6) стр. 11

Как рассчитать минимальную требуемую толщину стенки для трубопровода

Примечание: Все вопросы кода должны быть рассчитаны на дюймов (мм) и (МПа), если не указано иное. Преобразуйте соответствующим образом и правильно перед расчетом.

Как определить минимальную требуемую толщину стенки для трубной практики Вопрос № 1

Как определить минимальную требуемую толщину стенки для трубной практики Вопрос № 2

Сводка

Надеюсь, представленные примеры помогут вам понять, как рассчитать минимальную требуемую толщину стенки трубы.Если у вас есть дополнительные вопросы, отзывы или идеи по улучшению предоставленного контента, дайте мне знать в разделе комментариев ниже.

Энергетика 101

Определение толщины стенок глубоководных трубопроводов

Модифицированная формула тонкостенной трубы

учитывает внешнее давление
Джейён Ли, Уильям Рейни, Марк Бруннер
Aker Engineering
Толщина стенки цилиндрического сосуда с внутренним давлением определяется расчетным путем. обруч стресса.Напряжение кольца должно быть меньше максимально допустимого. Если расчетное кольцевое напряжение больше допустимого, толщину стенки трубы необходимо увеличить.

Для конструкции «труба в трубе», в которой внутренняя труба окружена внешней обсадной трубой с давлением в кольцевом пространстве, или труба в морской среде, подверженная воздействию внешнего гидростатического напора, при определении толщины стенки трубы следует учитывать внешнее давление. .

Существует два основных метода расчета кольцевого напряжения: формула для толстостенной трубы и формула для тонкостенной трубы.

Формула для толстостенной трубы дает точное решение, но требует итеративного решения для определения необходимой толщины стенки трубы. Формула для тонкостенной трубы проще и удобнее использовать при расчете толщины стенки трубы. Он обеспечивает достаточно точные результаты для тонкостенных труб, таких как трубы с отношением D / t более 20.

Результаты формулы для тонкостенных труб обычно менее чем на 5% по сравнению с точным решением, полученным по формуле для толстостенных труб, если нет внешнее давление существует.Однако существующая формула для тонкостенных труб дает ошибочные результаты в случаях, когда существует внешнее давление.

Формула для толстостенных труб

Французский инженер Ламе вывел формулу толстостенного цилиндра в 1833 году, используя систему напряжений, показанную на рисунке 1 [10 841 байт] (Blake, 1990). Труба под давлением создает как касательные, так и радиальные напряжения в двумерном поперечном сечении. Продольным или осевым напряжением можно пренебречь, предполагая отсутствие ограничений на концах трубы. Касательное напряжение создается в окружном или кольцевом направлении в стенке трубы.Радиальное напряжение действует перпендикулярно стенке трубы.

Исходя из равновесия сил (сумма сил в каждом направлении должна быть равна нулю) и интегрирования, касательное или кольцевое напряжение (sh) и радиальное напряжение (sr) можно выразить, как показано (Shigley, 1983).

Формулы обеспечивают «точные» решения в диапазоне упругости для любой толщины стенки цилиндрической трубы. В этих уравнениях положительные напряжения указывают на растяжение, а отрицательные напряжения указывают на сжатие. Подставив a = Di / 2, b = Di + 2t и r = a = Di / 2 на внутренней поверхности трубы, уравнение 1 [8 595 байтов] можно переписать как группу уравнения 3 [19 805 байтов].

Таким же образом кольцевое напряжение при r = b = D / 2 на внешней поверхности трубы представлено в группе Уравнения 4 [20 087 байтов].

Когда внешнее давление равно нулю, где Po = 0, тогда применяются уравнение 5 [7 750 байтов] и уравнение 6 [7 529 байтов].

Таким же образом можно выразить радиальные напряжения на внутренней и внешней поверхностях стенки трубы, как показано в Уравнении 7 [4 489 байтов] и Уравнении 8 [3 741 байта].

На рис. 2 [32,770 байт] и рис. 3 [20871 байт] показаны общие характеристики напряжений толстостенной трубы по толщине стенки трубы (уравнения с 1 по 8).

Абсолютное кольцевое напряжение является максимальным на внутренней поверхности стенки независимо от отношения внутреннего давления к внешнему давлению. По этой причине внутренний диаметр используется для расчета кольцевого напряжения при использовании формулы для толстостенной трубы. Разница кольцевых напряжений между поверхностью внутренней стенки и поверхностью внешней стенки такая же, как и перепад давления Pi — Po (уравнение 3 минус уравнение 4).

Показано, что кольцевое напряжение является растягивающим, когда внутреннее давление превышает внешнее давление.Однако, когда внутреннее давление равно внешнему, кольцевое напряжение становится сжимающим (см. Рисунок 3). Уравнения 3 и 4 показывают, что кольцевое напряжение становится сжимающим при одинаковом внутреннем и внешнем давлениях (Pi = Po). Это означает, что переход кольцевого напряжения от растяжения к сжатию происходит до того, как Pi = Po. Другими словами, труба уже находится в зоне сжатия до того, как внешнее и внутреннее давления сравняются. Это будет подробно исследовано позже в этой статье.

Радиальное напряжение всегда сжимающее.

Абсолютные значения на внутренней или внешней поверхности стены такие же, как внутреннее или внешнее давление. Разность радиальных напряжений такая же, как и разность давлений внутри и снаружи трубы. Сумма кольцевого напряжения и радиального напряжения всегда постоянна по толщине стенки трубы (сумма уравнения 1 и уравнения 2 [8 687 байтов]).

Уравнение 9 [6,357 байта]

Как упоминалось ранее, нулевое кольцевое напряжение возникает до того, как внешнее давление сравняется с внутренним давлением.При Pi = Po труба испытывает сжимающее напряжение, равное атмосферному давлению (установите уравнение 3 равным нулю, чтобы найти точку возникновения нулевого кольцевого напряжения). Уравнение дает уравнение 10 [5 609 байт], результаты которого всегда меньше 1,0.

Это означает, что нулевое кольцевое напряжение всегда возникает, когда внешнее давление меньше внутреннего давления. Это логично, если мы рассмотрим соответствующие области, на которые воздействует внутреннее давление и внешнее давление.

Рисунок 4 [24,355 байта] представляет уравнение 10 в графической форме. При D / t = 20 нулевое кольцевое напряжение возникает, когда внешнее давление составляет 90,5% от внутреннего давления. Например, если внутреннее давление составляет 2500 фунтов на квадратный дюйм, нулевое кольцевое напряжение будет возникать при 2500 раз 0,905 или внешнем давлении в 2263 фунта на квадратный дюйм. Выше внешнего давления 2263 фунта на квадратный дюйм при постоянном внутреннем давлении труба будет испытывать кольцевое напряжение сжатия. Кольцевые и радиальные сжимающие напряжения будут составлять 2500 фунтов на квадратный дюйм при Pi = Po = 2500 фунтов на квадратный дюйм (Рисунок 3).

Величина кольцевого напряжения всегда максимальна на внутренней поверхности стенки (рисунки 2 и 3). Поскольку труба должна быть рассчитана на максимальное напряжение через стенку, для определения толщины стенки трубы используется формула толстостенной трубы с r = a (уравнение 3). Это уравнение дает точное максимальное кольцевое напряжение для любой толщины стенки трубы и называется «формулой для толстостенной трубы».

Уравнение 11 [7,701 байт] применимо для труб в упругой области, что приемлемо, поскольку пластическая деформация из-за внутреннего давления обычно не допускается при определении толщины стенки трубы.Тем не менее, толщина стенки трубы, определяемая уравнением 11, должна быть проверена на предмет чрезмерного давления внешнего изгиба и сжатия. Методы расчета смятия трубы представлены во многих отраслевых нормах и не описываются в этой статье.

Для известной толщины стенки трубы кольцевое напряжение можно рассчитать с помощью уравнения 11. Однако при неизвестной толщине стенки трубы и известном максимально допустимом кольцевом напряжении (нормальная практика) уравнение требует нескольких итераций для решения толщина стенки трубы.Поэтому была введена более простая формула, которая широко используется в производстве сосудов высокого давления. Формула получена для тонкостенной трубы и поэтому называется «формулой для тонкостенной трубы».

Формула тонкостенной трубы

Когда длинный свободный участок тонкостенной трубы подвергается внутреннему давлению, на трубу создается кольцевое напряжение. Кольцевые силы будут в равновесии с силами Y-составляющей внутреннего давления (рис. 5 [6,626 байта]).

Уравнение 12 [7 278 байтов] получено из следующих допущений:

(1) Незначительное радиальное напряжение для тонкостенной трубы

(2) Равномерное кольцевое напряжение по толщине стенки трубы

(3) Внешнее давление отсутствует.

Радиальное напряжение при Po = 0 незначительно для тонкостенной трубы. Как показано на Рисунке 6 [27 382 байта], радиальное напряжение составляет менее 10% от кольцевого напряжения для отношений D / t больше 20. Предполагая пренебрежимо малое радиальное напряжение, кольцевое напряжение будет равномерным по толщине стенки, поскольку сумма кольцевых напряжений и радиальных напряжений должна быть постоянной.

Рисунок 6 также показывает, что использование формулы тонкостенной трубы для толстостенной трубы, например, отношение D / t менее 20, дает неточные результаты, поскольку в этой области нельзя пренебречь радиальным напряжением.По мере увеличения внешнего давления растягивающее кольцевое напряжение уменьшается. Радиальное напряжение на внутренней поверхности стенки равно внутреннему давлению (на него не влияет внешнее давление), поэтому отношение радиального напряжения к кольцевому напряжению увеличивается с увеличением внешнего давления.

На рисунке 6 показано, что отношение радиального напряжения к кольцевому напряжению становится 19% при соотношении D / t = 20, когда Po / Pi = 0,4. Более того, при Pi = Po радиальное напряжение равно кольцевому напряжению, что означает, что отношение достигает 100%.По мере увеличения отношения Po / Pi вклад радиального напряжения в кольцевое напряжение увеличивается экспоненциально. Это показывает, что формулу для тонкостенной трубы нельзя использовать в ситуациях внешнего давления, когда нельзя пренебречь радиальным напряжением.

Формула для тонкостенной трубы дает равномерное кольцевое напряжение по толщине стенки, а формула для толстостенной трубы дает переменное кольцевое напряжение с максимумом на внутренней поверхности стенки. Формула тонкостенной трубы обеспечивает максимальное кольцевое напряжение при использовании наружного диаметра трубы.На рисунке 7 показано кольцевое напряжение, рассчитанное по формуле для тонкостенной трубы с использованием внешнего диаметра трубы, среднего диаметра и внутреннего диаметра.

Использование внешнего диаметра дает примерно 5% завышение прогноза точного решения при соотношении 20 D / t. Если используется средний диаметр, формула для тонкостенных труб немного занижает точное решение на 0,3-0,1% при соотношении D / t от 20 до 40. Средний диаметр может использоваться, если прогноз на 0,3% или меньше занижает. при соотношении D / t более 20 приемлемо.Однако коды API и ASME используют внешний диаметр, что является консервативным.

Уравнение 13 [4,867 байта] дает разумные результаты для отношений D / t больше 20 без внешнего давления. Чтобы учесть внешнее давление, большинство отраслевых кодексов, таких как API 1111 и ASME B31.8, вычитают внешнее давление из члена внутреннего давления в уравнении 13 (показано в уравнении 14 [4 620 байтов]).

Это уравнение неверно, так как исходное уравнение (уравнение 13) получено из предположений об отсутствии внешнего давления и незначительном радиальном напряжении.Следовательно, уравнение 13 не может быть изменено для учета влияния внешнего давления. Это можно доказать, подставив Pi = Po в уравнение 14. Когда Pi = Po, уравнение 14 показывает нулевое кольцевое напряжение, что противоречит формуле для толстостенной трубы. Когда Pi = Po, кольцевое напряжение должно быть отрицательным (-) Po согласно формуле для толстостенной трубы (уравнение 11).

По этой причине уравнение 14 переоценивает кольцевое напряжение при высоких внешних давлениях. На рисунке 8 показано, насколько уравнение 14, которое называется «формулой исходной тонкостенной трубы», переоценивает кольцевое напряжение по сравнению с формулой для толстостенной трубы.Если внешнего давления нет, когда Po = 0 и отношение D / t больше 20, исходная формула для тонкостенной трубы переоценивает кольцевое напряжение максимум на 5% по сравнению с формулой для толстостенной трубы.

Завышение оценки на 5% вызвано пренебрежением радиальным напряжением и приемлемо с точки зрения консервативных расчетов. Однако при высоком внешнем давлении, таком как Po / Pi = 0,4 при D / t = 20, исходная формула для тонкостенной трубы предсказывает кольцевое напряжение на 13% выше, чем результат для толстостенной трубы.Превышение прогноза увеличивается до 80% при Po / Pi = 0,8 и D / t = 20.

Рисунок 8 демонстрирует, насколько излишне консервативна и неточна исходная формула для тонкостенных труб в случаях высокого внешнего давления. По мере увеличения толщины стенки трубы и внешнего давления разница между отношениями кольцевых напряжений между исходной формулой для тонкой стенки и формулой для толстой стенки значительно увеличивается. Это указывает на то, что исходная формула для тонких стенок неправильно предсказывает кольцевое напряжение, особенно для случаев высокого внешнего давления.

Модифицированная формула

Чтобы найти более реалистичную формулу для учета внешнего давления, нам нужно вернуться к формуле для толстостенной трубы (уравнение 11), которая дает точное решение. В уравнении 11, предполагая очень тонкую толщину (когда t приближается к нулю), мы имеем уравнение 15 [5 765 байт].

Подстановка уравнения 15 в уравнение 11 дает уравнение 16 [6 147 байтов].

Левая часть уравнения 15 всегда меньше D, поэтому уравнение 16 всегда дает более высокие требования к толщине стенки, чем формула для толстостенной трубы.Обратите внимание, что уравнение 16 имеет дополнительный член минус (-) Po по сравнению с исходной формулой для тонкостенной трубы (уравнение 13). Уравнение 16 называется «формулой модифицированной тонкостенной трубы».

Когда внешнее давление равно внутреннему давлению, уравнение 16 дает сжимающие напряжения, эквивалентные внешнему давлению, что согласуется с теорией толстостенных труб. Модифицированная формула для тонкостенной трубы предсказывает кольцевое напряжение более точно, чем исходная формула для тонкостенной трубы, представленная на рисунке 9.

Для отношений D / t больше 20 при Po / Pi = 0,4 исходная формула для тонкостенных труб завышает оценку на 13% или меньше (Рисунок 8), в то время как модифицированная формула для тонкостенных труб превышает кольцевое напряжение на 6 % (Рис. 8), оба значения сравниваются с формулой для толстостенных труб. По мере увеличения толщины стенки трубы и внешнего давления разница в погрешности между исходной и модифицированной формулами для тонкой стенки становится более значительной.

Рекомендация

По мере увеличения внешнего давления, например, с увеличением глубины воды для морского трубопровода, формула тонкой стенки предсказывает более высокое кольцевое напряжение, чем точное значение.Это вызвано тем, что в теории тонкостенных труб заменяется член Pi на (Pi — Po) для учета эффекта внешнего давления. Это неверно, поскольку исходное уравнение для тонкостенной трубы получено из предположений «отсутствие внешнего давления» и «незначительное радиальное напряжение».

Основываясь на теории «точных» толстостенных труб, исходная формула для тонкостенных труб должна содержать дополнительный член минус внешнего давления, как показано в уравнении 16, для более точного учета влияния внешнего давления.

Предлагаемая модифицированная формула для тонкостенных труб (уравнение 16) обеспечит достаточно точные оценки, менее чем на 10% по сравнению с точными значениями, для отношений D / t больше 20. Для отношений D / t меньше 20, с использованием толстостенных труб. формула трубы рекомендуется.

Некоторые отраслевые нормы не учитывают влияние внешнего давления, они должны быть изменены для глубоководных применений с учетом внешнего давления либо с использованием модифицированной формулы для тонкостенных труб, либо по формуле для толстостенных труб.

Ссылки

API 1111, «Проектирование, строительство, эксплуатация, техническое обслуживание морских углеводородных трубопроводов», 1993 г., API, Вашингтон, округ Колумбия.

ASME B31.8, «Системы газотранспортных и распределительных трубопроводов», 1992 г., Американское общество механиков Инженеры, Нью-Йорк.

Блейк, Александр, «Практический анализ напряжений в инженерном проектировании», 1990, Marcel Dekker, Inc., Нью-Йорк.

Шигли, Джозеф Э. и Митчелл, Ларри Д., «Машиностроительный дизайн», 1983, McGraw-Hill Book Company, Нью-Йорк.

Номенклатура
a Внутренний радиус трубы
b Внешний радиус трубы
D Внешний диаметр трубы Внутренний диаметр
dr Изменение радиуса трубы
Pi Внутреннее расчетное давление
Po Внешнее давление
r Радиус трубы в любой точке по толщине стенки трубы
t Номинальная толщина стенки трубы
sh Напряжение в кольце = окружное напряжение = касательное напряжение, точное значение по формуле для толстостенной трубы
shm Напряжение в кольце по модифицированной формуле для тонкостенной трубы
sho Напряжение пялец из оригинальной тонкой ва Формула трубы ll
sho ‘ Напряжение в кольце по формуле исходной тонкостенной трубы без учета внешнего давления
sr Радиальное напряжение

Copyright 1998 Oil & Gas Journal.Все права защищены.

Узнайте, как рассчитать толщину стенок для 3D-печати

Автор Sculpteo 26 июля, 2017 |

Создавали ли вы когда-нибудь 3D-модель, которую невозможно напечатать на 3D-принтере из-за ее хрупкости? Расчет минимальной толщины стенки — один из самых важных шагов при подготовке 3D-модели для 3D-печати. В этом блоге мы подготовили для вас несколько советов, которые следует учитывать при проектировании вашей детали, а также обзор инструментов 3D-печати Sculpteo, которые помогут вам добиться успеха.

Минимальная толщина стенки — это минимальная толщина, которую ваша модель должна иметь для любого данного материала или технологии. Прежде чем вы решите напечатать свой объект на 3D-принтере, необходимо лучше понимать толщину стенок, потому что 3D-принтеру нужна именно эта толщина для успешной 3D-печати вашего объекта. Когда дело доходит до 3D-печати, проблемы с толщиной стенок часто являются причиной того, что ваша модель не может быть напечатана. Есть четыре важных момента, которые необходимо учитывать, чтобы предотвратить плохой результат при отправке вашей 3D-модели в онлайн-службу 3D-печати или даже на ваш собственный 3D-принтер.

Установите минимальный масштаб вашей модели

Моделирование вашего 3D-файла не обязательно требует, чтобы вы работали с заданной единицей измерения или масштабом. Это особенно верно для таких программ, как Blender, в которых вы можете указать пропорции, но не единицы. Эта работа будет выполнена после этапа моделирования, когда вы отправите свою модель на 3D-принтер. Вот почему вам нужно уделять особое внимание как масштабу, так и размеру вашей 3D-модели на этом этапе. Создание 3D-печати в миллиметрах вместо сантиметров вполне может привести к плохой 3D-печати.

Пример этого можно найти в архитектурных моделях. Фактически, это одна из основных проблем, с которыми мы столкнулись при работе с La Cité de L’Architecture над репродукцией La Merveille. С архитектурными моделями, например, вполне возможно напечатать на 3D-принтере что-то в масштабе 1/10 и просто невозможно сделать то же самое в 1/250. После определенного уровня миниатюризации детали (присутствующие в цифровом 3D-файле) начинают исчезать, когда он превращается в физический объект, потому что 3D-принтер не может их создать (или создаст очень хрупкие).Довольно часто для архитектурных моделей необходимо вмешательство человека, чтобы решить, какие детали будут сохранены, а какие нет, чтобы 3D-файл не содержал информации, которую нельзя распечатать.

3D-печатная модель для архитектурных целей

И снова результат таков, что детали невозможно распечатать или, что еще хуже, они могут сломаться или даже вызвать сбой 3D-принтера.

Проверьте минимальную толщину стенки выбранного вами материала для 3D-печати

Каждый материал для 3D-печати (и, следовательно, технология) ведет себя по-разному.Хотя спецификации остаются примерно одинаковыми для каждой технологии 3D-печати, при переключении между разными технологиями вы можете найти очень конкретные рекомендации. Например, если вы решите напечатать свои детали на 3D-принтере из наших пластиковых или алюминиевых материалов, вы можете легко сослаться на ограничения используемой технологии. В случае пластика минимальная толщина стенки составляет 0,8 мм в соответствии с нашими проектными требованиями. Однако, если вы пытаетесь печатать на 3D-принтере с помощью Multicolor, вам необходимо установить минимальную толщину стенки как минимум 2 мм.

Для наших самых прочных металлических материалов для 3D-печати, особенно для металлических материалов, использующих технологию DMLS, таких как титан Ti64 и нержавеющая сталь 316L, минимальная толщина стенки, необходимая для вашей 3D-модели, составляет 2 мм. Более того, для легкого и прочного материала, такого как алюминий AlSi7Mg0,6, он должен быть тоньше как минимум на 0,5 мм.

Создание оптимизированных форм для 3D-печати

Важным фактором для толщины стены, конечно же, является структура и геометрия конструкции.Есть две вещи, в которых 3D-принтеры плохи: выступ и большая плоская поверхность.
Чтобы избежать выступов, некоторые технологии 3D-печати используют опоры, которые удерживают деталь во время печати. Эти опоры можно удалить с помощью химической ванны, в то время как другие (например, SLA или DLP) требуют удаления опор вручную, что, вероятно, оставит некоторые «следы» на 3D-принте. Для порошковой 3D-печати (SLS или Binder Jetting) проблема немного иная, поскольку сам порошок внутри печатного объема работает как опора.Это позволяет машине создавать сложные формы без поддержки. Тем не менее, здесь все еще применима физика, и экстремальные вылеты по-прежнему не могут быть распечатаны или должны быть проверены в первую очередь.

Пример выступа, из-за которого объект не печатается.

Если вы хотите напечатать на 3D-принтере большую поверхность (или, что еще лучше, большую плоскую поверхность), вам нужно принять во внимание одну вещь: машина должна иметь возможность физически строить «неподдерживаемые стены» или что плоские поверхности имеют тенденцию оборачиваться. при охлаждении.Это означает, что плоские поверхности 3D-файла с недостаточной толщиной не останутся плоскими после печати.

Пример минимальной толщины пластмассовой стенки для стен с опорой и без опоры

Старайтесь не создавать слишком толстые стены

Слишком толстые стены также могут быть причиной того, что мы не можем напечатать вашу деталь на 3D-принтере. Слишком большая толщина стенки может вызвать слишком большое напряжение, которое может привести к растрескиванию вашего 3D-печатного объекта, а если он будет еще более толстым, ваш объект может сломаться.Это причина, по которой мы всегда рекомендуем вам проверять все рекомендации по материалам и соблюдать максимальную толщину стенок.

Не забывайте о гравитации!

Даже если вы позаботились обо всех упомянутых выше проблемах, иногда легко упустить из виду очевидные вещи: гравитация существует. Хотя наш оператор будет работать над обнаружением физических аберраций, таких как плавающие детали, нестабильное положение, детали, несущие слишком большой вес по сравнению с их толщиной, всегда легче исправить их в первую очередь.Особое внимание следует уделять геометрии вашей конструкции, а наиболее напряженные части должны быть утолщены.

Это говорит само за себя, правда?

Что можно сделать, чтобы легко бороться с этими ошибками?

В Sculpteo 3D-печать может быть доступной и простой всего за несколько кликов. Во второй части поста познакомьтесь с нашими онлайн-инструментами программного обеспечения для 3D-печати, которые помогут вам проверить и улучшить толщину стенок вашего дизайна прямо в нашем интерфейсе. Таким образом, нет необходимости снова возвращаться к программному обеспечению для 3D-моделирования.

1. Проверьте прочность 3D-печатной детали с помощью Solidity Check

.

Когда вы загружаете свой 3D-файл на наш веб-сайт, вы заметите, что мы отображаем правильный рендеринг вашего 3D-файла. Эта тепловая карта или проверка твердости является частью вкладки обзора и показывает, где ваша модель слишком тонкая. Эта тепловая карта строится в зависимости от материала и окончательного размера ваших объектов. Когда все зеленое, ваша модель готова к работе. Однако, если некоторые детали слишком хрупкие и не соответствуют минимальной толщине, они будут отображаться оранжевым или даже красным.Это означает, что ваш объект хрупкий и его легко сломать. Лучше всего тогда еще раз пересмотреть свою модель.

Проверка твердости — отличный инструмент для проверки прочности вашего объекта, и в то же время очень простой и быстрый в использовании. Это первый шаг, который необходимо сделать перед оформлением заказа. Когда вы меняете размер модели или материал, обновление выполняется автоматически.

Вы можете обратиться к нашей странице обзора на Solidity Check, чтобы узнать больше о том, как работает этот программный инструмент для 3D-печати.

2. Автоматически корректируйте 3D-модель с помощью нашего инструмента утолщения

Инструмент «Утолщение»

работает, автоматически корректируя недостаточную толщину вашей 3D-модели для соблюдения минимальной толщины. Этот программный инструмент для 3D-печати рассчитывает для каждой точки, принадлежащей хрупким деталям, новое положение, чтобы создать сетку с соблюдением минимальной толщины стенок. Наш инструмент для утолщения включен в наш набор инструментов для проверки вместе с проверкой на твердость, видом в разрезе и досье для 3D-печати — окончательное подтверждение.

Перед использованием Утолщение:

После использования Утолщение:

3. Используйте наш инструмент для долбления, чтобы оптимизировать вашу модель

Если вы задаетесь вопросом о наилучшей толщине стенки для сложной модели, которая должна быть полой для снижения веса и стоимости материала, то хорошим решением может быть создание модели в виде заполненного твердого тела, а затем использование нашего автоматического инструмента для создания полых отверстий. выдолбите это. Считается одним из наиболее часто используемых нами программных инструментов для 3D-печати. ​​Вытяжка помогает добавлять отверстия в структуру и создавать пустые детали внутри.У этого есть два преимущества: удаление неиспользованного материала и облегчение вашего объекта. В результате удешевляется 3D-печать

.

Вы можете обратиться к нашему предыдущему сообщению в блоге «Инструменты онлайн-оптимизации для 3D-печати», чтобы узнать больше о том, как использовать эту функцию.

Чтобы создать идеальный объект для 3D-печати, мы рекомендуем вам ознакомиться с рекомендациями по дизайну на нашей специальной странице. Вы можете найти всю необходимую информацию о разной минимальной толщине стенок каждого из наших материалов для 3D-печати.Или просто загрузите свой файл и откройте для себя наши программные инструменты для 3D-печати, которые помогут вам улучшить вашу 3D-модель!

Калькулятор веса трубы — британская и метрическая

Калькулятор веса трубы — британская и метрическая

Щелкните для просмотра данных или таблицы:


Формула веса трубы — эту формулу можно использовать для определения веса на фут для трубы любого размера с любой толщиной стенки.


Формула в английской системе мер:
Вес / фут = 10.69 * (OD — Толщина стенки) * Толщина стенки

* Итоговые данные следует использовать как оценку веса.

* Итоговые значения следует использовать как оценку веса.


Как рассчитать вес

Вес любой трубы можно рассчитать по следующим формулам. Просто умножьте соответствующую плотность сплава на приведенный ниже расчет требуемой детали.

Имперская система Пример
плотность (фунты / дюйм³) 0,284 фунта / дюйм³
х
(OD² — (OD — 2xT) ²) (3,0 дюйма ² — (3,0 дюйма — 2×0,022 дюйма) ²)
х
Длина 12 дюймов
х
π / 4
=
вес 0.702 фунта

Метрическая система Пример
плотность (г / см³) 7,85 г / см³
х
(OD² — (OD — 2xT) ²) (50,0 мм² — (50,0 мм — 2×1,0 мм) ²)
х
Длина 1 мес.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2011-2019. ООО «Талицкий кирпич»