Что теплее — керамогранит или керамическая плитка?
На строительном рынке большой выбор отделочных материал и из такого разнообразия фирм и коллекций трудно выбрать то, что необходимо. При выборе плитки задача усложняется, ведь нужно помнить об его различных видах, которые между собой различаются. Виды этого материала имеют в составе одинаковые компоненты и технические характеристики. Выбирая между керамической плиткой и керамогранитом, нужно знать, что теплее. Необходимо разобраться с нюансами и характеристиками этих облицовочных покрытий. Самыми известными напольными покрытиями являются керамогранит и керамическая плитка. Эти строительные материалы подходят для любых видов отделки не только полов, но и стен. При укладке этих материалов мы хотим сделать полы теплыми (обычная плитка и керамогранит холодные строительные материалы, которые необходимо утеплять). Что теплее керамическая плитка или керамогранит? Чтобы ответить на этот вопрос необходимо разобраться, кто проводит тепло лучше.
Теплопроводность керамической плитки
Керамическая плитка как напольное покрытие имеет много преимуществ. Лучше всего ее укладывать на плиточный клей на стяжку из бетона. Такая укладка напольного покрытия хорошо будет собирать тепло и отдавать его воздуху. За короткий промежуток времени плитка греется и на долгое время воздух в помещении будет нагрет. У керамической плитки небольшой коэффициент проводимости тепла. Она хорошо аккумулирует тепло в сочетании с остальными строительными материалами.
Керамогранит и его теплопроводность
Своими свойствами керамогранит превосходит другие облицовочные материалы. Даже обычная плитка ему уступает. На его выбор влияет вес, цветовая гамма, текстура и габариты. Но основным параметром при выборе керамогранита остается все-таки коэффициент теплопроводности. Обо всех характеристиках керамогранита можно прочитать на упаковке. У керамогранита очень маленький коэффициент теплопроводности. Это напольное покрытие нагревается и очень медленно отдает свое тепло. Керамогранит как напольное покрытие лучше всего подойдет для обустройства теплых полов. Если пол облицовывают плиткой, необходимо выбирать керамическую плитку с наименьшим показателем теплопроводности. Сократить траты на обогрев можно с помощью керамогранита. По показателям теплопроводности он обходит всех соперников и керамическую плитку тоже.
При выборе напольного покрытия между керамогранитом и керамической плиткой стоит выбирать первое. Керамогранит обладает рядом достоинств, среди которых:
- маленькая цена;
- теплопроводность ниже, чем у керамической плитки и других строительных материалов;
- подходит для облицовки не только полов, но и стен;
- высокая устойчивость к износу.
При сравнении характеристик керамической плитки и керамогранита становится ясно, что керамогранит теплее.
водопоглощение, морозостойкость, теплопроводность и термическая стойкость. Статьи компании «ЛенКерам»
Физические свойства плитки — это свойства, которые не зависят от механического или химического воздействия. Изменение в состоянии материала при повышении влажности, температуре ниже 0 градусов, теплопроводность и термическая стойкость.
Водопоглощение
Данный параметр показывает пористость плитки, что непосредственно влияет на плотность изделия, и соответственно на прочность. Чем более пористая плитка, тем менее она прочная, в соответствии с чем классифицируется по соответствующему стандарту EN 14411.
Показатель водопоглощения зависит от количества жидкости, которое она впитывает в соотношении к массе сухой плитки. В случае с глазурованными плитками, данный показатель не затрагивает глазурь, так как у глазури отсутствует пористость.
Морозостойкость
Показатель, отражающий способность плитки выдерживать температуры ниже ноля градусов, это особенно важно для плитки, которую планируется использовать в экстерьере.
Замораживание происходит в 2 этапа: проникновение воды внутрь плитки;замораживание её и соответственно расширение. Показатель морозостойкости определяется по двум параметрам: возможность попадания воды внутрь плитки; размер и форма пор — которые определяют степень нагрузки, которую материал будет испытывать в процессе замерзания.
Теплопроводность и термическая стойкость
Теплопроводность — коэффициент теплопроводности плитки варьируется обычно от 0,5 у более пористых материалов, до 0,9 у более плотных (клинкер, керамогранит).
Керамическая плитка как и натуральный камень может аккумулировать тепло, то есть плитка долго нагревается, но нагревшись — долго остывает. Все эти свойства необходимо учитывать при проектировании облицовочных поверхностей, а так же при устройстве теплых полов.
Конечно вряд ли в каком-либо магазине вы в описании увидите все эти показатели, да и если спросите у консультанта, нельзя быть уверенным, что он знает ответы, поэтому правила простые: керамогранит и клинкер могут находиться в суровых условиях перепадов температуры, и замерзания, а вот керамическая плитка скорее всего потрескается.
гост, толщина, вес, теплопроводность, водопоглощение, прочность
Для подтверждения технических характеристик керамогранита производители регулярно испытывают его на прочность. Технологии совершенствуются и в 2015 году керамогранит ГОСТ 6787-2001 превосходит требования стандартов практически в два раза.
Плотность керамогранита выше, чем плотность натурального камня и керамической плитки — удельная плотность керамогранита 1400 кг/м³
Технические характеристики керамогранита | Евростандарт UNI EN 14411 |
ГОСТ 6787-2001 |
Нормативы |
Средние показатели плитки |
|
Соответствие размеров сторон (мм) | (± 1,8 мм) | ± 1,5 | ± 0,5 | ± 0,5 | |
Толщина (мм) | (± 0,4) | ± 0,5 | ± 0,5 | ± 0,2 | |
Кривизна (%) | ± 0,5 | ± 1,5 | ± 0,6 | ± 0,1 | |
Косоугольность (%) | ± 0,6 | ± 0,5 | ± 0,5 | ± 0,3 | |
Кривизна поверхности (%) | ± 0,5 | ± 0,5 | ± 0,5 | ± 0,2 | |
Водопоглощение (%) | < 3 | < 3,5 | < 0,5 | < 0,07 | |
Предел прочности при изгибе (МПа) | > 27 | > 28 | > 35 | > 45 | |
Твердость по шкале Мооса | > 6 | — | — | 7 | |
Устойчивость к истиранию по кварцевому песку (г/см2) |
— | < 0,18 | < 0,18 | 0,08 | |
Износоустойчивость мм3 | <205 | — | — | 190 | |
Морозостойкость (циклов без повреждений) | без повреждений | > 25 | > 50 | > 200 |
Износостойкость
На испытаниях при продолжительном абразивном воздействии керамогранит теряет в толщине от 120 до 200 мм3, меньше чем натуральный гранит. Класс износостойкости керамогранита 4 (PEI Ⅳ) и 5 (PEI Ⅴ).
Водопоглощение
Определяется отношением массы воды в образце при полном насыщении, к его сухой массе. Этот показатель важно учитывать при наружной облицовке. Водопоглощение керамогранита составляет не более 0,05 % — ниже других облицовочных материалов. Он останется без повреждений при температурных перепадах минимум 30 лет.
Стойкость керамогранита к кислотам и щелочам
Согласно европейским стандарту ISO 10545-13 керамогранит кислотостойкая плитка класса ULA, потеря массы не более 1,36%. По ГОСТ 961-89 плитки вида ТКД и ТКГ предназначение для защиты от концентрированных кислот.
Предел прочности при изгибе и разрушающая нагрузка
Это основные строительные характеристики прочности облицовочных материалов. Предел прочности керамогранита составляет 45 МПа при максимальной разрушающей нагрузке на тестируемый образец 2000 ньютонов. Показания могут незначительно отличатся в зависимости от типа и толщины плитки керамогранита.
Устойчивость керамогранита к загрязнениям
Устойчивость керамогранита к загрязнениям определяется нормой ISO 10545-14. В процессе испытаний используют три вида загрязняющих реагентов: чернила, раствор йода и оливковое масло, и четыре варианта чистки и соответствующие очищающие средства (горячая вода, ручная чистка обычными чистящими средствами, механическая чистка средствами с сильной концентрацией, использование химического растворителя). Результат ранжируется от 1 до 5, чем выше показатель, тем больше устойчивость и простота чистки. Для матового керамогранита — это 3-й уровень. Для удаления пятен с керамогранитной плитки (особенно, если предполагается использование разноцветных затирочных смесей) рекомендуется приобрести специальное чистящее средство на кислотно-растворящей основе. Удаление пятна на напольном керамограните вполне возможно, для начала следует попробовать горячую воду и обычные чистящие бытовые средства, и как можно скорее.
Плитка керамогранитная. Технические характеристики
С недавних пор на смену традиционному кафелю пришел синтетический облицовочный камень, именуемый керамогранит. Изготавливаемый из каолиновых глин, кварца и полевого шпата, он сразу привлек к себе внимание широких масс, благодаря своей прочности, долговечности и универсальности. Некоторые виды этого облицовочного покрытия рекомендованы как для стен, так и пола, для внутренних и наружных работ. По своему составу керамический гранит очень близок к природному минералу, что делает его экологически чистым продуктом.
При покупке керамогранита цветовая гамма, текстура, дизайн, безусловно, играют существенную роль. Однако на технические характеристики керамогранитной плитки для пола, все же, стоит обращать внимание в первую очередь, чтобы в будущем она соответствовала условиям эксплуатации. Рассмотрим основные показатели этого популярного материала, позволяющие сделать правильный выбор:
-
Износостойкость. Указывает на степень сопротивляемости покрытия к истиранию и любому внешнему динамичному воздействию. В зависимости от типа синтетического камня это показатель может меняться.
-
Морозостойкость. Определяет возможность использования материала для наружной отделки. Любая керамогранитная плитка для пола, технические характеристики которой включают в себя данный параметр, способна выдержать до 50-ти циклов по замораживанию/размораживанию, без каких-либо последствия такого влияния.
-
Водопоглощение. И хотя по стандарту EN это значение составляет не более 3%, в действительности у керамогранита оно крайне низкое — в среднем, от 0,05 до 0,5%. Это позволяет применять плитку в разных климатических зонах для наружной облицовки зданий.
-
Прочность на изгиб. Плитка керамогранитная по ГОСТ с этим показателем прочнее натурального камня почти в три раза, обычного напольного кафеля — в полтора, а настенной облицовки — в два.
-
Устойчивость к механическому воздействию. Согласно EN, выделяется две позиции: сопротивляемость царапинам: >6 Моос и стойкость к образованию разлома: >27 N/mm кв.
-
Удельный вес керамогранита. Он колеблется в пределах 2400 кг/куб.м, что примерно соответствует удельному весу стекла.
-
Длина, ширина, толщина. Наиболее ходовой размер материала — 600 на 600 мм, с толщиной 12, но он в основном применим на больших площадках. Для малогабаритных помещений плитка керамогранитная 300х300х8, технические характеристики которой соответствуют вышеуказанным стандартам, — самый оптимальный вариант.
-
Стойкость цвета и его чистота. По определению EN, данный показатель числится как «без изменений», поскольку керамический гранит обладает устойчивостью к агрессивным воздействиям со стороны химических веществ, щелочей, кислот, а также не изменяет свою цветовую палитру при длительном солнечном излучении.
-
Сопротивляемость скольжению. На данное свойство стоит обращать более пристальное внимание, если керамогранит будет использоваться для пола. Для того, чтобы определить класс керамогранита, в специальных лабораториях фабрик проводятся испытания. К примеру, для частного жилья рекомендуется плитка керамогранитная с техническими характеристиками одного типа, а для общественных мест и производственных площадок этот параметр совершенно другой. Избежать скольжения и травматизма помогает выраженная рельефность облицовки либо специальное инновационное покрытие «AntiSlip system».
-
Теплопроводность. И пусть в нормативных документах это свойство не нашло отражения, постоянное использование керамогранита для вентфасадов и системы «теплый пол» красноречиво свидетельствует, что коэффициент теплопроводности у искусственного камня меньше, чем у природного.
Похожие статьи
Что теплее: керамическая плитка или керамогранит?
15.10.2018
Выбор отделочного материала многих вгоняет в ступор, новички часто интересуются, керамогранит теплее плитки или нет? Чтобы ответить на вопрос, керамогранит теплее плитки или нет, попробуем досконально во всем разобраться.
Процесс изготовления материалов
Чтобы понять, какая плитка теплее – керамическая или керамогранитная, рассмотрим каждый материал по отдельности.
Процесс производства керамогранита и керамики аналогичен. Оба сырья получают путем прессования. В состав плитки входит глина, песок и минералы. Все компоненты смешиваются и обжигаются при высокой температуре. После изделие покрывают эмалью и обжигают повторно.
Готовый строительный ресурс пригоден только для отделки стен здания, потому как его структура менее прочна, но более пориста, чем многие материалы, относящиеся к этому классу. Такая плита носит название бикоттура.
Кафель типа монокоттура производится тем же способом. Однако в процессе производства используется более мощное прессование. В результате структура изделия получается менее пористой. Обжиг осуществляется однократно, эмаль применяется сразу. Материал идеально подходит как для отделки стен, так и для напольного покрытия.
Керамогранитную плитку получают, слегка подкорректировав традиционный, вышеописанный способ. С первого момента своего появления керамогранит использовали в качестве облицовочного материала для полов в общественных местах. Однако с развитием современных технологий специалисты постоянно экспериментировали, в результате чего им удалось существенно улучшить эстетические качества сырья. Таким образом, оно стало пригодным для использования в жилых помещениях.
Для производства керамогранита берется та же смесь, что и для получения керамики, но в нее сразу же добавляют красящие пигменты, благодаря чему керамогранит имеет равномерный оттенок по всей толщине. Также материал не эмалируется. Однородную массу разбавляют водой, тщательно просушивают, а затем прессуют, используя самый мощный пресс. И запекается в специально отведенном месте при температуре около 1200-1300 градусов.
Керамогранит, практически, не впитывает влагу. Сырье обладает максимально низкой пористостью, которая не превышает трех процентов.
Какое сырье способно удерживать тепло в течение длительного времени?
Керамогранит и керамическая плитка схожи по многим характеристикам.
Существует несколько разновидностей плитки:
- хрупкая – используется для отделки стен внутри здания;
- износостойкая – отлично подходит в качестве напольного покрытия;
- морозостойкая – применяется для облицовки наружных стен.
Но керамогранит все же выигрывает благодаря своим неизменным качествам, таким как:
- устойчивость;
- низкий уровень водопоглощения.
На основе вышеизложенного можно сделать вывод, что керамогранит теплее керамической плитки. Низкий коэффициент теплопроводности сырья обеспечивает хорошее нагревание, и удерживание комфортной температуры в течение длительного периода времени. В отличие от керамической плитки, которую нужно подбирать для такой цели специально, керамогранит включает в себя функцию удерживания тепла по умолчанию. Это оптимальный вариант для отделки полов.
толщина пола, технические характеристики и теплопроводность, удельный вес и водопоглощение
Достаточно популярным и востребованным материалом для отделки пола является керамогранит
Отличие керамогранитной плитки лежит в технологическом процессе производства. Для керамогранитной плитки используется прессование под давлением не менее 450 кг/см2 в отличие от керамической плитки. Керамическую плитку прессуют под давлением не более 300 кг/см2. Вторым отличием в технологии является температура обжига: для керамогранита применяется не менее 1300 ᵒС, для керамической плитки – 500-900 ᵒС. Ниже узнаем о керамогранитной плитке подробнее.Содержание материала:
Керамогранит и его технические характеристики
При всей схожести названия, керамогранитная плитка не имеет никакого отношения к граниту, разве что, можно сказать прочная, как гранит. Керамогранитную плитку можно отнести к особому виду керамической плиты. Описание технологического процесса строится так: перемешивается масса глины, песка, шпатов и минеральных красителей до однородной гомогенной массы, затем прессуется на гидравлическом прессе под давление не менее 450 кг/см2, чем давление будет выше, тем масса будет плотнее без мельчайших воздушных камер, затем эти плитки сушат и только после этого полуфабрикаты обжигают при температуре не меньше 1300 оС в тоннельной печи.
Ознакомиться с техническими характеристиками керамогранита можно самостоятельно в интернете или в магазине
Уникальные эксплуатационные качества керамогранитной плитки можно сгруппировать по следующим критериям:
- Особая прочность к механическим повреждениям, устойчивость к ежедневной нагрузочной шлифуемости, как от оборудования, так и от любых движущихся объектов, незаурядная износоустойчивость;
- Предел прочности на изгибе регламентируется ГОСТом;
- Низкая способность к абсорбции воды, т.е. поглощение воды намного меньше, чем у натурального гранита;
- Абсолютная невосприимчивость к действию агрессивных химических растворов;
- Прекрасная адаптивность к резким перепадам температуры;
- Устойчивость по отношению действия внешней среды на цветовую гамму и глубину рисунка;
- Высокая устойчивость на изгиб;
- Нескользящая поверхностью при намокании.
Особые технические характеристики керамогранитной плитки делают ее довольно востребованным строительным материалом для широкого спектра использования. Многоцветный керамогранит группируется по типу получения внешнего окраса. Гомогенный, технический, производится в соответствии со стандартами без какой-либо дополнительной обработки поверхности, шершавый, имеет однородную структуру, внешне похож на натуральный гранит или керамический камень, имеет увеличенную толщину и небольшой размер плитки, считается наиболее прочным.
В состав керамогранита входят только природные материалы, что определяет его экологичность.
Глазурованный – до обжига в печи на полуфабрикат наносится тонкий слой глазури, после процедуры запекания, глазурь впекается в поверхность плитки. Двойная засыпка или частично-окрашенный, когда в верхний слой примешаны окрашивающие пигменты, а нижний слой из исходного сырья. Окрашенный в массе – до вымешивания смеси, добавляются красящие пигменты, которые вмешиваются во всю массу плитки, после обжига плитка приобретает равномерный окрас по всей толщине.
Состав керамогранита
Керамогранит можно систематизировать по типам поверхности (из Вики). Матовая или натуральная, присуща техническому (гомогенному) керамограниту, получается на выходе после обжига без какой-либо дополнительной обработки. Шлифованная, обработанная специальными абразивными щетками с алмазным напылением, имеет красивый ненавязчивый глянец, приятный на ощупь. Полированная шлифуется алмазными дисками до зеркального вида, на ощупь очень гладкая, скользящая. Структурированная имитирует любой вид рельефной поверхности, например, дерево, кожу, любой натуральный камень и т.д. Сатинированная производится путем нанесения на готовые полуфабрикаты минеральных солей, после обжига получается легкий глянец. Лаппатированная или полуполированная, получается путем частичного срезания верхнего матового слоя на специальном оборудовании, образуется поверхность с чередованием гладкой и матовой структуры с ощущением объемности.
Производят также керамогранитную плитку с рустичными, антибактериальными, светящимися, противоскользящими поверхностями. Как говорится, на вкус и цвет, был бы любитель.
Для изготовления керамогранита, как правило, используется кварцевый песок, полевой шпат и каолиновая глина
Неполированный, технический керамогранит используется в промышленных учреждениях, складах, рельефный объемный керамогранит легко вписывается в любой интерьер помещения, полированный керамогранит применяется часто для облицовки фасада зданий. Легче перечислить, где не используется керамогранит. Уникальные свойства керамогранита формируются его составом и технологическим процессом и проверяются в процессе эксплуатации.
Для изготовления керамогранита, требуется следующий состав сырья:
- Каолиновая глина тугоплавких сортов;
- Чистый кварцевый песок;
- Полевой шпат;
- Натуральные красящие пигменты, как правило, окиси металлов.
Все составляющие сырья для производства керамогранитной плитки имеют природное происхождение. Технология проверки на химический состав, радионуклиды обязательно применяется к сырью керамогранита в соответствии с ГОСТом.
Правильная толщина керамогранитной плитки для пола
Находясь в любом месте, стоит просто оглянуться вокруг себя и, обязательно, взглядом натолкнешься на керамогранит. Керамогранитом выложены стены, пол, фасады, дорожки и т.д. Используют его и на мебели, вместо подоконников, столешниц. Керамогранит производится разных размеров, в том числе и толщины.
При выборе керамогранитной плитки для пола, настоятельно рекомендуется обращать внимание на толщину плитки.
От толщины выбирается схема укладки, учитывать при определении нагрузки на истираемость участка, высота, на которую есть возможность приподнять пол. Толщина керамогранитной плитки для пола варьируется от 3 мм до 30 мм и неразрывно связана с форматом плитки.
Выбирая керамогранитную плитку для отделки пола, специалисты рекомендуют обращать внимание на ее толщину
Востребованным размером выпускаемой плитки считается (мм):
- 600х600;
- 600х600х10;
- 400х400х9;
- 300х300х8;
- 1200х300;
- 450х450
- 300х600.
Толстый керамогранит имеет высокое значение сопротивляемости на изгибе и большой срок службы. Чем толще плитка, тем она прочнее, тем не менее, толщину надо соотносить с необходимостью к механической нагрузке, чтобы не переплачивать за нее.
Для чего знать удельный вес керамогранита
Удельный вес керамогранита, еще один критерий, по которому можно определить качество плитки. Существует ГОСТ, которым руководствуются производители, и согласно которому удельный вес керамогранита должен быть в пределах 2400/м3. Исходя из удельного веса и произведя не сложный расчет, квадратный метр керамогранита должен весить в пределах 18,5-19 кг.
При расчете веса плитки нужно учитывать также ее плотность и пористость
На вес плитки влияет:
- Плотность плитки;
- Пористость плитки;
- Процент водопоглощения.
Вес можно рассчитать путем умножения объема на его плотность. Применение значения удельного веса на практике поможет сделать вывод о качестве керамогранита.
Каково водопоглощение и плотность керамогранита
Водопоглащение напольного керамогранита регламентируется стандартами. Водопоглощение определяет способность керамогранитной плитки впитывать и удерживать в своих порах влагу. Чтобы определить процент водопоглащения, образец керамогранита подвергают манипуляциям.
Водопоглощение и плотность керамогранита должны соответствовать принятым стандартам
А именно:
- Высушивают до состояния постоянного веса и взвешивают;
- Помещают в горячую влажную среду;
- Кипятят в течение 1 ч;
- Взвешивают и находят процент изменения объема и веса.
Для керамогранита процент водопоглощения не должен превышать 0,05%. Этот коэффициент учитывается при использовании цементных растворов или клеевых основ при укладке керамогранитной плитки.
Что такое теплопроводность керамогранита
Теплопроводность керамогранита определяется его способностью передавать тепло от основания на поверхность плитки. Теплопроводность керамогранита зависит от следующих факторов – наличия пористости плитки, степени кристаллизации, состава. Теплопроводность необходимо учитывать при монтировании теплого пола или объектов на улице.
Если вы собрались устанавливать теплый пол, в таком случае необходимо учитывать теплопроводность керамогранитной плитки
Чтобы определить плотность керамогранита, необходимо для образца измерить длину, ширину, толщину, вычислить объем по формуле, взвесить, поделить массу на объем. Плотность позволяет рассчитать нагрузку на плитку. В некоторых случаях, это бывает необходимо.
Классификация керамогранитной плитки (видео)
Производители учитывают потребности покупателей и выпускают не только керамогранитную плитку, но и декоративные и отделочные дополнения в одном стиле с керамогранитной плиткой. Используя их при укладке плитки, получается законченный красивый вид. Все это делает керамогранитную плитку абсолютно универсальным материалом для облицовки объектов.
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.045 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 | 0.04 | — |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996– 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 150…600 | 0.052…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная техническая | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.073…0.096 | — |
Пробковое покрытие для полов | 540 | 0.078 | — |
Ракушечник | 1000…1800 | 0.27…0.63 | 835 |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
Теплопроводность керамики
Керамика все чаще используется в корпусах и печатных платах, поскольку она имеет ряд преимуществ по сравнению с пластиками: гораздо более высокая теплопроводность, возможное соответствие коэффициента теплового расширения и герметичность. К сожалению, стоимость керамики по-прежнему намного выше, чем стоимость пластмасс, что запрещает их использование в недорогих крупносерийных продуктах. Тем не менее, их использование в будущих продуктах кажется неизбежным, учитывая тенденции в полупроводниковой промышленности в отношении ожидаемого гораздо более низкого теплового сопротивления корпусов и одновременной конструкции корпусов и плат для облегчения распространения тепла.
Проблема с теплопроводностью керамики заключается в ее зависимости от состава, размера зерна и процесса изготовления, что затрудняет получение надежных значений только из литературы. Глядя на значения, указанные в различных справочниках, документах и технических паспортах, можно заметить две вещи. 1) существуют большие вариации и 2) многие авторы копируют значения из одних и тех же, но не отслеживаемых источников.
Интересным примером является нитрид алюминия (AIN), все более популярная керамика.Чаще всего указывается значение около 180 Вт / мК. Однако в ссылке 1 можно найти некоторые интересные данные на графике, на котором значения теплопроводности от семи производителей отображаются в зависимости от температуры. Наибольшее значение при комнатной температуре составляет 200 Вт / мК; самый низкий — 80 Вт / мК. Кроме того, эти значения снижаются более чем на 30% от 20 ° до 100 ° C. Такое же падение, кстати, наблюдается и для других керамик, таких как BeO и Al 2 0 3 . (См. Также раздел «Технические данные» в предыдущем выпуске.)
Теплопроводность (Вт / мК) при 20 ° C | ||
AIN | Нитрид алюминия | 80-200, 180, 260 |
A1 2 0 3 | Оксид алюминия | 18-36 |
BeO | Оксид бериллия | 184, 200, 220, 242, 250, 300 |
БН | Нитрид бора | 15-40, 250-300, 600 |
SiC | Карбид кремния | 90-160, 70-200, 80, 210 |
В таблице показан диапазон значений при комнатной температуре для ряда часто используемых керамических материалов из различных источников.Обратите внимание, что большой разброс значений
Таким образом, опубликованные значения теплопроводности керамики идеально подходят для сопоставления экспериментальных результатов с численным моделированием, и я боюсь, что именно это и происходит на практике. Измерения на месте с использованием хорошо разработанных экспериментальных тестов являются предпочтительным способом получения точных значений.
Артикул1. Р. Диндвидди, Advanced Electronic Packaging Materials, Vo1.167, Бостон, 1989.
Теплопроводность — выбранные материалы и газы
Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как
«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния»
Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.
См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды
Теплопроводность для обычных материалов и продуктов:
Теплопроводность — k — Вт / (м · К) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Материал / вещество | Температура | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 o C (77 o F) | 125 C
Пример — Проводящая теплопередача через алюминиевый горшок по сравнению с горшком из нержавеющей сталиКондуктивная теплопередача через стенку горшка может быть рассчитана как q = (k / s) A dT (1) или, альтернативно, q / A = (к / с) dT где q = теплопередача (Вт, БТЕ / ч) A = площадь поверхности (м 2 , фут 2 ) q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 )) k = теплопроводность ( Вт / мК, БТЕ / (ч фут ° F) ) dT = t 1 — t 2 = разница температур ( o C, o F) с = толщина стены (м, фут) Калькулятор теплопроводности k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) ) s = толщина стенки (м, фут) A = площадь поверхности (м 2 , фут 2 ) dT = t 1 — t 2 = разница температур ( o C, o F) Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм — разность температур 80o CТеплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C) = 8600000 (Вт / м 2 ) = 8600 (кВт / м 2 ) Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80o CТеплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C) = 680000 (Вт / м 2 ) = 680 (кВт / м 2 ) Тепловые свойства технической керамики Обзор Термические свойства характеризуют реакцию материала на изменения температуры. Многие из наших технических керамических материалов идеально подходят для определенных тепловых характеристик, в том числе для высокотемпературных и высокотемпературных прецизионных применений, за счет управления собственными свойствами и структурой материала. Многие технические керамические составы могут быть адаптированы в соответствии с тепловыми требованиями конкретного применения, когда критически важны теплопроводность, коэффициент теплового расширения и стойкость к тепловому удару. Тепловые свойства технической керамики Теплопроводность определяет, насколько хорошо материал распределяет тепло внутри себя. Сковороды обладают высокой теплопроводностью, что позволяет равномерно распределенному теплу быстро проникать в пищу. С другой стороны, изоляционные перчатки используются для работы с горячими предметами, поскольку их низкая теплопроводность предотвращает передачу тепла чувствительным рукам.Техническая керамика необычайно универсальна, демонстрируя широкий диапазон теплопроводности. В портфолио CoorsTek более 400 технических керамических составов, поэтому мы будем работать с вами, чтобы найти оптимальный материал для вашего применения. Коэффициент теплового расширения ( 1X10 -6 / ° C) Удельная теплоемкость ( Дж / кг * К) Удельная теплоемкость показывает, насколько легко или сложно повысить температуру продукта. В высокотемпературных приложениях, где регулирование температуры имеет решающее значение, это измерение показывает, какие продукты будут работать лучше всего.Керамика обладает исключительными характеристиками, когда речь идет о высоких требованиях к удельной теплоемкости, по сравнению со сталью. Устойчивость к тепловому удару ( ° C) Устойчивость к тепловому удару измеряет способность противостоять резким и резким перепадам температуры. Во время быстрого охлаждения сердцевина продукта остается, в то время как поверхность остывает, предотвращая равномерное тепловое сжатие. Многие технические керамические составы демонстрируют высокую термостойкость, что означает, что они минимально расширяются или сжимаются при экстремальных или быстрых изменениях температуры. Сохраняйте теплые напитки теплыми — подход к тепловым свойствамВ нашей серии статей о теплопроводности мы представляем различные контексты, в которых теплопроводность играет роль, при выполнении наших повседневных задач. Число раз, когда средний человек размышляет о влиянии теплопроводности при принятии повседневных решений, практически отсутствует. Вы не поверите, но теплопроводность более важна для вашего распорядка дня, чем вы думаете, особенно когда речь идет о вашей кофейной кружке.Некоторые люди предпочитают керамическую кружку стеклянной, а другие предпочитают сталь. Что за рассуждение? Скорее всего, этот выбор кружек основан на эстетических предпочтениях, а не на научной основе. Рисунок 1 . Какая из трех кружек сохранит ваш кофе самым теплым: из нержавеющей стали, керамики или стекла? Теплопередача, в частности теплопроводность, является важной идеологией среди производителей кружек, поскольку они стремятся производить качественный материал, привлекательный для клиентов.Существует три различных метода передачи тепла: теплопроводность, излучение и конвекция. Процесс теплопроводности — это способность тепла перемещаться от среды с более высокой температурой (жидкость) к среде с более низкой температурой (кружка), пока не будет достигнуто температурное равновесие между двумя материалами. Итак, какой из трех предложенных материалов для кружек больше всего замедлит этот процесс равновесия и дольше сохранит более теплую жидкость? Рисунок 2 . Три метода теплопередачи: теплопроводность, конвекция и излучение. Стальная кружка имеет самую высокую теплопроводность из трех предложенных материалов — 14,3 Вт / мК. Эта высокая теплопроводность связана с относительно быстрым температурным равновесием между кружкой и жидкостью, что означает, что жидкость будет довольно быстро остывать. Теплопроводность керамической кружки составляет примерно 3,8 Вт / мК, тогда как теплопроводность стеклянной кружки составляет примерно 1,1 Вт / мК. Из-за относительно низкой теплопроводности стеклянной кружки жидкость должна поддерживать более высокую температуру в течение максимально длительного времени. Основываясь на упомянутых выше знаниях о теплопроводности, следует использовать стеклянную кружку для сохранения самых горячих жидкостей в течение длительного периода, затем керамическую, а затем стальную кружку. Низкая теплопроводность стеклянной кружки не позволяет теплу жидкости быстро проникать в кружку и рассеиваться. Благодаря высокой теплопроводности стали тепло от жидкости быстро передается кружке, а затем и ладоням. Хотя, исходя из знаний об теплоемкости, керамическая кружка получает награду за теплый напиток.Теплоемкость — это способность материала удерживать тепло на единицу объема. Из-за более низкой плотности керамики, благодаря небольшим порам в материале, тепло может накапливаться внутри самой кружки, а не выделяться в область вокруг кружки, то есть в ладонь. Пока тепло остается в пределах барьера кружки, между кружкой и жидкостью поддерживается равновесная реакция, предотвращая слишком быстрое охлаждение жидкости. В следующий раз, когда вы будете покупать свою новую любимую кружку, вспомните, как теплопроводность и теплоемкость могут повлиять на теплоту вашего напитка, и выбирайте с умом! Теплопроводность — обзор3.2.4 Теплопроводность эпоксидных смолТеплопроводность — это способность материала проводить тепло, и она представляет собой количество тепловой энергии, протекающей в единицу времени через единицу площади с температурным градиентом 1 ° на единицу расстояния. Теплопроводность — необходимая характеристика для рассеивания образовавшейся тепловой энергии в системе. До сих пор сообщалось о различных исследованиях, направленных на повышение теплопроводности эпоксидных смол, и среди них исследования, основанные на микро- и наноматериалах, вызвали больший исследовательский интерес.Ganguli et al. [66] разработали химически функционализированные композиты из вспученного графита / эпоксидной смолы с конечной целью повышения теплопроводности. Композиты, состоящие из 20 мас.% Функционализированного графита, показали значительно улучшенную теплопроводность — 5,8 Вт / м К по сравнению с 0,2 Вт / м К чистой эпоксидной смолы, то есть примерно 28-кратное улучшение теплопроводности [66]. Veca et al. [67] также получили более высокую теплопроводность эпоксидной смолы за счет использования углеродных нанолистов, полученных из расширенного графита. Yung et al. [68] достигли увеличения теплопроводности примерно на 217% для композита эпоксид / нитрид бора. Это было выполнено с помощью обработки поверхности силаном нитрида бора и смешивания многомодального размера частиц при синтезе композита [68]. Хуанг и др. [69] сообщили о существовании очень высокой теплопроводности эпоксидного композита на основе нанотрубок, функционализированного полиэдрическим олигосилсесквиоксаном (ПОСС). Улучшение теплопроводности примерно на 1360% было получено при введении 30 мас.% Функционализированного POSS нитрида бора [69]. Исследование Xu et al. [70] сообщили о более высокой теплопроводности эпоксидных композитов, содержащих нитрид бора (BN) и нитрид алюминия (AlN) с обработанной поверхностью, из-за пониженного сопротивления термического контакта между эпоксидной смолой и частицами из-за повышенного межфазного взаимодействия между ними. Было обнаружено, что обработка поверхности частиц с использованием силана более осуществима, чем обработка ацетоном и кислотой. Эпоксидные композиты с 57 об.% BN, обработанного силаном, показали теплопроводность 10.3 Вт / м К. Кроме того, добавление 60 об.% Обработанного силаном AlN привело к теплопроводности 11,0 Вт / м · К [70]. С точки зрения увеличения теплопроводности эпоксидной смолы, Teng et al. [71] использовали нековалентно функционализированные нанолисты графена, полученные путем π-π-стэкинга молекул пирена, сопровождаемого функциональной сегментированной полимерной цепью. Полученный эпоксидный композит имел превосходную теплопроводность за счет увеличенной площади поверхности в результате улучшенной дисперсии графена и взаимодействий графен-эпоксид.Композиты с 4 phr нанолистов нековалентно функционализированного графена показали примерно на 20% и 267% большую теплопроводность, чем соответствующие эпоксидные композиты на основе чистого графена и исходных MWCNTs [71]. В другом исследовании Song et al. [72] также разработали нековалентно функционализированный графен путем обработки 1-пиреномасляной кислотой, а затем использовали его для получения нанокомпозита эпоксид / графен. Полученный нанокомпозит показал отличную теплопроводность около 1,53 Вт / м · К [72]. Чаттерджи и др.[73] использовали расширенные нанопластинки графена, функционализированные амином, для обогащения теплопроводности эпоксидной смолы, и в результате было получено увеличение теплопроводности примерно на 36% для 2 мас.% Графена [73]. Moisala et al. [74] исследовали влияние ОСУНТ и МУНТ на теплопроводность эпоксидной смолы. Присутствие MWCNT действительно увеличивало теплопроводность эпоксидной смолы, но не в ожидаемом диапазоне. В то же время нанокомпозит эпоксид / ОСУНТ даже неожиданно показал более низкую теплопроводность, чем чистый эпоксид [74].Для получения положительного эффекта и полной эффективности ОУНТ Bryning et al. [75] изготовили нанокомпозиты эпоксид / ОУНТ с использованием ОУНТ, обработанных поверхностно-активными веществами и ДМФА. В результате обработанные композиты на основе ОСУНТ показали повышенную теплопроводность, а композит с обработанным поверхностно-активным веществом композитом содержал больше ОСУНТ и приводил к большему увеличению примерно на 65% для 0,1 об. Доли ОСУНТ [75]. Исследование Biercuk et al. [76] сообщили об увеличении теплопроводности примерно на 125% при комнатной температуре с добавлением 1 мас.% Неочищенных ОУНТ.В другом исследовании Yu et al. [77] сообщили о повышенной теплопроводности эпоксидной смолы за счет включения гибридного наполнителя из ОСУНТ и графитовых нанопластинок из-за снижения сопротивления интерфейса, вызванного дополнительной организованной перколяционной сеткой [77]. Исследование Du et al. [78] достигли примерно 220% улучшения теплопроводности за счет использования отдельно стоящих ОСУНТ в эпоксидной смоле. Эти отдельно стоящие ОУНТ обладали пониженным термическим сопротивлением поверхности раздела в эпоксидной матрице. Эти материалы были приготовлены из композита SWCNT / PMMA с 1 мас.% Путем удаления содержания PMMA с помощью газификации с последующей пропиткой эпоксидной смолой [78]. Чтобы расширить вклад теплопроводности МУНТ в эпоксидные смолы, Ян и др. [79] практиковали синтез эпоксидного композита с использованием привитых бензолэтрикарбоновой кислотой MWCNTs (BTC-MWCNTs), полученных после модификации Фриделя-Крафтса. Отмечена более высокая растворимость и совместимость BTC-MWCNT в эпоксидной матрице по сравнению с чистыми MWCNT. Композиты, содержащие 5 об.% BTC-MWCNT, показали выдающуюся теплопроводность 0,96 Вт / м · К, то есть улучшение примерно на 684% по сравнению с чистой эпоксидной смолой, и это показано на рис.3.3 [79]. Другое исследование Cui et al. [80] разработали МУНТ с диоксидом кремния, используя золь-гель метод, а затем внедрили в эпоксидную матрицу для улучшения ее теплопроводности. Наблюдалось увеличение теплопроводности примерно на 51% для нанокомпозитной системы с 0,5 мас.% МУНТ, покрытых диоксидом кремния, а также примерно на 67% для 1 мас.% МУНТ, покрытых диоксидом кремния [80]. Рис. 3.3. Теплопроводность композитов эпоксидная смола / MWCNT. (A) Теоретическая модель Нана и композиты с различным содержанием (B) первичных MWCNT, (C) обработанных кислотой MWCNT и (D) BTC-MWCNTs [79]. В другом исследовании Zhou et al. [81] использовали синергетический эффект MWCNT и микрокарбида кремния (SiC) в качестве гибридного наполнителя для улучшения теплопроводности эпоксидной смолы. Гибридный наполнитель, состоящий из 5 мас.% MWCNT и 55 мас.% Micro-SiC, дает примерно в 23 раза большую теплопроводность, чем у чистой эпоксидной смолы [81]. В другом исследовании Yang et al. [82] получили более высокую теплопроводность эпоксидной смолы за счет использования гибридного наполнителя, состоящего из МУНТ с привитыми триэтилентетрамином и нано-SiC, функционализированного силаном [82].Im et al. [83] также наблюдали улучшенную теплопроводность эпоксидной смолы за счет использования гибридного наполнителя из оксида графена и МУНТ. Shimazaki et al. [84] приготовили прозрачный нанокомпозит наноцеллюлоза / эпоксид, содержащий 58 мас.% Наноцеллюлозы с превосходной теплопроводностью> 1 Вт / м К. Это произошло из-за высококристаллической природы наноцеллюлозы, которая действовала как эффективные фононные пути в нанокомпозитах [84] ]. Повышенная теплопроводность некоторых выбранных эпоксидных композитов сведена в Таблицу 3.2. Таблица 3.2. Сравнение теплопроводности некоторых выбранных эпоксидных композитов
Научные принципыНаучные принципыВведение: Керамика обладает характеристиками, позволяющими использовать ее в
широкий спектр применений, в том числе:
Разнообразие их свойств проистекает из их склеивания и кристаллические структуры. Атомная связь: В керамических материалах встречаются два типа механизмов связывания: ионный и ковалентный. Часто эти механизмы сосуществуют из того же керамического материала. Каждый тип связи приводит к разным характеристики. Ионные связи чаще всего возникают между металлическими и неметаллическими элементами. элементы, которые имеют большие различия в своей электроотрицательности. Ионно-связанный конструкции, как правило, имеют довольно высокие точки плавления, так как связи прочные и ненаправленные. Другим важным механизмом соединения в керамических структурах является Ковалентная связь. В отличие от ионных связей, по которым переносятся электроны, ковалентно связанные атомы разделяют электроны. Обычно элементы вовлечены неметаллические и имеют небольшую электроотрицательность различия. Многие керамические материалы содержат как ионные, так и ковалентные связи. Общие свойства этих материалов зависят от доминирующего склеивающий механизм. Соединения, которые являются либо в основном ионными, либо в основном ковалентные имеют более высокие температуры плавления, чем соединения, в которых ни один из видов связи не преобладает. Таблица 1: Сравнение% ковалентного и ионного характера с несколькими температурами плавления керамического компаунда.
Классификация: Керамические материалы можно разделить на два класса: кристаллические и аморфные (некристаллические).В кристаллическом материалы, точка решетки занята либо атомами, либо ионами в зависимости от механизма связывания. Эти атомы (или ионы) расположены в регулярно повторяющемся узоре в трех измерений (т.е. имеют дальний порядок). В отличие, в аморфных материалах атомы обладают только ближним порядком. Некоторые керамические материалы, такие как диоксид кремния (SiO 2 ), могут существуют в любой форме. Кристаллическая форма SiO 2 результаты когда этот материал медленно охлаждается от температуры (T> T MP @ 1723 ° C).Способствует быстрому охлаждению некристаллическое образование, так как время не отводится на заказ договоренности сформировать. Диоксид кремния кристаллический Аморфный диоксид кремния (обычный узор) (случайный узор)Рисунок 1 : Сравнение физического строения обоих кристаллический и аморфный диоксид кремния Тип связи (ионная или ковалентная) и внутренняя структура (кристаллическая или аморфная) влияет на свойства керамические материалы.Механические, электрические, тепловые и оптические Свойства керамики будут рассмотрены в следующих разделах. Тепловые свойства: Важнейшие термические свойства керамических материалов: теплоемкость, тепловое расширение коэффициент и теплопроводность. Многие приложения керамика, например, ее использование в качестве изоляционных материалов, относится к эти свойства. Тепловая энергия может храниться или передаваться твердым телом.Способность материала поглощать тепло из окружающей среды составляет его теплоемкость. В твердых материалах при T> 0 K атомы постоянно вибрирует. На колебания атомов также влияют колебания соседних атомы через связь. Следовательно, колебания могут передаваться через твердое тело. Чем выше температура, тем выше частота вибрации и тем короче длина волны связанной с ней упругой деформации. Потенциальная энергия между двумя связанными атомами может быть схематично представлено схемой: Рисунок 2: График, изображающий потенциальную энергию между двумя связанными атомыРасстояние, на котором минимальная энергия (потенциальная яма) представляет собой то, что обычно называют длиной связи.Хороший аналогия — сфера, прикрепленная к пружине, с равновесием положение пружины, соответствующее атому на длине связи (потенциальная яма). Когда пружина сжимается или растягивается из положения равновесия, сила, тянущая его обратно к положение равновесия прямо пропорционально смещению (Закон Гука). После смещения частота колебаний равна наибольшая, когда есть большая жесткость пружины и шар малой массы. Керамика обычно имеет прочные связи и легкие атомы.Таким образом, они могут иметь высокочастотные колебания атомов с малыми возмущения в кристаллической решетке. В результате они обычно имеют как высокую теплоемкость, так и высокую температуру плавления температуры. С повышением температуры амплитуда колебаний связей увеличивается. Асимметрия кривой показывает, что межатомная расстояние также увеличивается с температурой, и это наблюдается как термическое расширение. По сравнению с другими материалами керамика с сильные связи имеют глубокие и узкие кривые потенциальной энергии и, соответственно, малые коэффициенты теплового расширения. Проведение тепла через твердое тело связано с передачей тепла энергия между колеблющимися атомами. Продолжая аналогию, рассмотрим каждая сфера (атом) должна быть связана со своими соседями сетью из пружины (связки). Вибрация каждого атома влияет на движение соседних атомов, и в результате возникают упругие волны, которые распространяются через твердое тело. При низких температурах (примерно до 400), энергия проходит через материал преимущественно через фононы, упругие волны, которые проходят через скорость звука.Фононы — это результат колебаний частиц, которые увеличение частоты и амплитуды при повышении температуры. Фононы путешествуют через материал, пока не рассеиваются, либо за счет фонон-фононного взаимодействия *, либо на дефектах решетки. Фононная проводимость обычно уменьшается с повышением температуры в кристаллическом материалов по мере увеличения количества рассеяния. Аморфная керамика которые не имеют упорядоченной решетки, испытывают еще большее рассеяние, и поэтому плохие проводники.Те керамические материалы, которые состоит из частиц одинакового размера и массы с простыми структуры (такие как алмаз или BeO) подвергаются наименьшему количеству рассеивают и поэтому обладают наибольшей проводимостью. При более высоких температурах фотон проводимость (излучение) становится преобладающим механизмом передача энергии. Это быстрая последовательность поглощения и испускания фотонов, которые путешествовать со скоростью света. Этот режим проведения особенно важно в стекле, прозрачный кристаллическая керамика и пористая керамика.В этих материалах теплопроводность увеличивается с повышением температуры. Хотя на теплопроводность влияют неисправности или дефекты кристаллической структуры, изолирующие свойства керамика существенно зависит от микроскопических дефектов. В передача любого типа волны (фононной или фотонной) прерывается границами зерен и поры, поэтому более пористые материалы являются лучшими изоляторами. Использование керамических изоляционных материалов для печей и промышленных печи — одно из применений изоляционных свойств керамические материалы. Электронный механизм переноса тепла относительно не имеет значения в керамике, потому что заряд локализован. Этот механизм очень важно, однако, для металлов, которые имеют большое количество свободные (делокализованные) электроны. * Фонон-фононные взаимодействия — еще одно следствие асимметрия потенциала взаимодействия между атомами. Когда разные фононы перекрываются в месте расположения конкретного атома, колебательные амплитуды накладываются друг на друга.В асимметричном потенциале ну, кривизна меняется в зависимости от смещения. Этот означает, что жесткость пружины, с помощью которой удерживается атом, также изменения. Следовательно, атом имеет тенденцию колебаться с другая частота, что дает другой фонон. Таблица 2 : Сравнение термических свойств различных керамические материалы.
Одно из самых интересных высокотемпературных приложений керамические материалы — их использование на космическом шаттле. Почти весь экстерьер шаттла покрыт керамической плиткой. из волокон аморфного кремнезема высокой чистоты. Те, кто подвергается при самых высоких температурах добавлен слой стекла с высоким коэффициентом излучения. Эта плитка выдерживает температуру до 1480 C в течение ограниченное количество времени.Некоторые из испытанных высоких температур шаттлом во время входа и подъема показаны на рисунке 3. Рисунок 3: Схема подъема и спуска космического челнока. температурыТемпература плавления алюминия 660 C. Плитка сохраняет температура алюминиевого корпуса шаттла не ниже 175 C, а внешняя температура может превышать 1400 C. Плитка быстро остывает, поэтому после воздействия такой высокой температуры они достаточно прохладные, чтобы их можно было держать голыми руками в около 10 секунд.Удивительно, но толщина этих керамических плитки варьируются от 0,5 до 3,5 дюймов. Рисунок 4: График внутренней температуры плитки по сравнению с плиткой толщина.Челнок также использует керамические аппликации в тканях для зазоров. наполнители и термобарьеры, армированные углерод-углеродные композиты для носового обтекателя и передней кромки крыла, а также высокотемпературные стеклянные окна. Оптические свойства: Оптическое свойство описывает то, как материал реагирует на воздействие света.Видимый свет — это форма электромагнитного излучение с длинами волн от 400 до 700 нм соответствует диапазону энергий от 3,1 до 1,8 электрон-вольт (эВ) (от E = hc /, где c = 3 x 10i 17 нм / с и h = 4,13 · 10 -15 эВ · с). Когда свет падает на объект, он может пропускаться, поглощаться или размышлял. Материалы различаются по способности пропускать свет и обычно описываются как прозрачные, полупрозрачные или непрозрачные.Прозрачные материалы, такие как стекло пропускает свет с небольшим поглощением или отражением. Материалы, пропускающие свет диффузно, например, матовое стекло, полупрозрачны. Непрозрачные материалы не пропускают свет. Два важных механизма взаимодействия света с частицы в твердом теле — это электронные поляризации и переходы электронов между различными энергетическими состояниями. Искажение электронное облако атома электрическим поле, в данном случае электрическое поле света, равно описывается как поляризация.В результате поляризации некоторые энергия может быть поглощена, т.е. преобразована в упругие деформации (фононы) и, следовательно, тепло. С другой стороны, поляризация может распространяться как связанная с материалом электромагнитная волна со скоростью, отличной от скорости света. Когда свет поглощается и переизлучаемый с поверхности на той же длине волны, он называется отражение. Например, металлы обладают высокой отражающей способностью, а те с серебристым внешним видом отражают весь видимый свет.Уровни энергии электронов квантуются, т. Е. Каждый электрон переход между уровнями требует определенного количества энергия. Поглощение энергии приводит к смещению электронов из основного состояния в высшее, возбужденное состояние. Электроны затем вернуться в основное состояние, сопровождаемое повторной эмиссией электромагнитного излучения. В неметаллах нижние энергетические связывающие орбитали составляют то, что называется валентной зоной, а разрыхляющие орбитали с более высокой энергией образуют зону проводимости.В разделение между двумя зонами — это ширина запрещенной зоны, и обычно она велика. для неметаллов, меньшего размера для полупроводников и отсутствующего в металлах. Диапазон энергий для видимого света составляет от 1,8 до 3,1 эВ. Материалы с запрещенной зоной в этом диапазоне будут поглощать эти соответствующие цвета (энергии) и передать другим. Они будут прозрачными и цветными. Для Например, ширина запрещенной зоны фотоэлементов из сульфида кадмия составляет около 2.4 эВ, поэтому он поглощает компоненты видимого света с более высокой энергией (синий и фиолетовый). Оно имеет желто-оранжевый цвет в результате переданных участков спектр. Этот тип световой проводимости называется фотопроводимостью. Материалы с энергией запрещенной зоны менее 1,8 эВ будут непрозрачными. потому что весь видимый свет будет поглощаться электронными переходами от валентности к зоне проводимости. Рассеяние этого поглощенная энергия может быть прямым возвратом в валентную зону или более сложные переходы с участием примесей.Чистые материалы с энергией запрещенной зоны более 3,1 эВ не будет поглощать свет в видимый диапазон и будет казаться прозрачным и бесцветным. Свет, излучаемый переходами электронов в твердых телах, равен называется люминесценцией. Если это произойдет для короткое время это флуоресценция, а если длится дольше это фосфоресценция. Свет, который передается из одной среды в другую, например из воздуха в стекло, преломляется.Это явный изгиб световых лучей, возникающих в результате изменения скорости света. Показатель преломления (n) материал — это отношение скорости света в вакууме (c = 3 x 10 8 м / с) до скорости света в этом материале (n = резюме). Изменение скорости является результатом электронной поляризации. Поскольку эффект поляризации увеличивается с увеличением размера атомы, стекла, содержащие ионы тяжелых металлов (например, свинца кристалл) имеют более высокие показатели преломления, чем составленные из более мелкие атомы (например, натриево-известковое стекло). Рисунок 5: На этом рисунке показано преломление света, как оно переходит от среды с низкой оптической плотностью (например, воздуха) к среде с более высокой оптической плотностью (например, вода или стекло). Свет поддерживает его частота, но его скорость изменяется в более плотной среде. Следовательно, длина волны должна соответственно измениться. Закон Снеллиуса (n 1 sin q 1 = n 2 sin q 2 ) можно использовать для связи показателей преломления (n), углов (q) падения и преломления, а также скорости (v) света в двух СМИ: n 1 / n 2 = q 2 / q 1 = v 1 / v 2 )Внутреннее рассеяние света в прозрачной по своей природе материал может сделать материал полупрозрачным или непрозрачным.Такой рассеяние происходит на флуктуациях плотности, границах зерен, фазовых границах и поры. Многие приложения используют преимущества оптических свойств материалы. Прозрачность очков делает их полезными для окна, линзы, фильтры, посуда, лабораторная посуда и предметы искусства. Преобразование света в электричество — основа для использования полупроводниковых материалов, таких как арсенид галлия в лазерах и широкое использование светодиодов (светодиодов) в электронике устройств.Флуоресцентная и фосфоресцентная керамика используется в электрические лампы и телевизионные экраны. Наконец, оптические волокна передавать телефонные разговоры, сигналы кабельного телевидения и компьютерные данные, основанные на полном внутреннем отражении света сигнал. Механические свойства: Механические свойства описывают реакцию материала силам, нагрузкам и ударам. Керамика — прочный, твердый материал которые также устойчивы к коррозии (долговечны).Эти свойства, вместе с их низкой плотностью и высокой температурой плавления делают керамика привлекательные конструкционные материалы. Применение современной керамики в конструкциях включает компоненты автомобильных двигателей, брони для военной техники и самолетов конструкции. Например, карбид титана имеет примерно в четыре раза больше прочность стали. Таким образом, стальной стержень в конструкции самолета может быть заменен стержнем из TiC, который будет выдерживать ту же нагрузку на половину диаметр и 31% веса. Другие приложения, использующие преимущества механических свойства керамики включают использование глины и цемента в качестве конструкционные материалы. И то, и другое можно формовать и формовать во влажном состоянии, но при высыхании получается более твердый и прочный предмет. Очень твердые материалы такие как оксид алюминия (Al 2 O 3 ) и карбид кремния (SiC) используются в качестве абразивов для шлифовка и полировка. Основным ограничением керамики является ее хрупкость, т.е.е., склонность к внезапному выходу из строя при небольшой пластической деформации. Это особенно беспокойство, когда материал используется в конструкционных приложениях. В металлов, делокализованные электроны позволяют атомам изменять соседи, не нарушая полностью структуру связи. Этот позволяет металлу деформироваться под нагрузкой. Работа сделана как узы смещение при деформации. Но в керамике из-за комбинированного ионный и ковалентный механизм связывания, частицы не могут сдвигаться без труда.Керамика ломается при приложении слишком большого усилия, и работа, проделанная по разрыву связей, при растрескивании создает новые поверхности. Рисунок 6 : Напряжение-деформация диаграммы для типичных (а) хрупких и (б) пластичных материаловХрупкое разрушение происходит образование и быстрое распространение трещин. В кристаллических твердых телах трещины прорастают сквозь зерна (межзерновые) и по спайности плоскости в кристалле. Полученная изломанная поверхность может иметь зернистая или грубая текстура.Аморфные материалы не содержат зерен и правильные кристаллические плоскости, поэтому изломанная поверхность более вероятно, будет гладким на вид. Теоретическая прочность материала — это растягивающее напряжение. это было бы необходимо, чтобы разорвать связи между атомами в идеальном твердое тело и разведите предмет. Но все материалы, в том числе керамика, содержат незначительные структурные и производственные дефекты, которые сделать их значительно слабее идеальной прочности.Любой недостаток, такие как поры, трещины или включения, вызывают напряжение концентрация, которая усиливает приложенное напряжение. Поры также уменьшить площадь поперечного сечения, по которой действует нагрузка. Таким образом, более плотные, менее пористые материалы обычно прочнее. По аналогии, чем меньше размер зерна, тем лучше механические свойства. На самом деле керамика — это самый прочный из известных монолитных материалов, и они обычно сохраняют значительную часть своих прочность при повышенных температурах.Например, нитрид кремния (Si 3 N 4 , = 3,5 г / см 3 ) роторы турбокомпрессора имеют прочность на излом 120 тысяч фунтов на квадратный дюйм при 70 F и 80 тысяч фунтов на квадратный дюйм при 2200 F. Рисунок 7 : Испытания на растяжение, сжатие и изгиб для материалыПрочность на сжатие (раздавливание) важна для керамики, используемой в конструкции, такие как здания или огнеупорный кирпич. Сжимающий прочность керамики обычно намного превышает их предел прочности.Чтобы компенсировать это, керамику иногда подвергают предварительному напряжению в сжатом состоянии. Таким образом, когда керамический объект подвергается растягивающей силе, приложенное нагрузка должна преодолевать сжимающие напряжения (внутри объекта) прежде, чем дополнительные растягивающие напряжения могут увеличиться и нарушить объект. Безопасное стекло (термически закаленное) стекло) является одним из примеров такого материала. Керамика обычно довольно неэластичны и не гнутся, как металлы. Жесткость зависит от состав и структура.Способность к обратимой деформации есть измеряется модулем упругости. Материалы с прочным сцеплением требуют больших усилий для увеличения пространство между частицами и имеют высокие значения модуля упругости эластичность. Однако в аморфных материалах больше свободных пространство для перемещения атомов под приложенной нагрузкой. Как результат, аморфные материалы, такие как стекло, легче изгибаются, чем кристаллические материалы, такие как оксид алюминия или нитрид кремния. Вязкость разрушения способность противостоять разрушению при наличии трещины.Это зависит от геометрия объекта и трещины, приложенное напряжение, и длина трещины. Разрабатываются композиты, которые сохраняют желаемые свойства керамики, уменьшая их склонность к разрушению. Например, введение углерода усы волокна препятствуют распространению трещин по керамике и повышает прочность. Стеклокерамика, такая как используются для изготовления посуды, состоящей из стеклянной матрицы в какие крошечные керамические кристаллы растут, так что конечная матрица фактически состоит из мелких кристаллических зерен (средний размер <500 нм).Поскольку размер их зерен очень мал, эти материалы прозрачный для света. Кроме того, поскольку прочность на излом обратно пропорционально квадрату размера зерна, материалы прочные. Другими словами, наличие кристаллов улучшает механические и термические свойства стекла - стеклокерамика прочна, устойчива к термическому удару и хороша теплопроводники. Электрические свойства: Электрические свойства керамических материалов сильно различаются, с характерными мерами, охватывающими многие порядки величины (см. Таблицу 3).Керамика, вероятно, больше всего известна как электрическая. изоляторы. Некоторые керамические изоляторы (например, BaTiO 3 ) могут быть поляризованными и использоваться в качестве конденсаторов. Прочая керамика проводит электроны, когда достигается пороговая энергия, и поэтому называются полупроводники. В 1986 году был открыт новый класс керамики, высокий T c сверхпроводниками . Эти материалы проводят электричество практически с нулевым сопротивлением. Наконец, керамика известные как пьезоэлектрики могут генерировать электрический ответ на механическую силу или наоборот. Таблица 3 : Удельное электрическое сопротивление различных материалы.
Любой, кто использовал портативный кассетный плеер, личный компьютер или другое электронное устройство использует керамические диэлектрические материалы.Диэлектрик Материал представляет собой изолятор, который может поляризоваться на молекулярном уровне. уровень. Такие материалы широко используются в конденсаторах, устройствах, которые используются для хранения электрического заряда. Строение конденсатора показан на схеме. Рисунок 8 : Схема конденсатора.Заряд конденсатора хранится между двумя его пластинами. Количество заряда (q), которое он может удерживать, зависит от его напряжения. (В) и его емкость (С). q = CVДиэлектрик вставлен между пластинами конденсатора, увеличение емкости системы в раз, равное ее диэлектрической проницаемости k. q = (кКл) VИспользование материалов с большой диэлектрической проницаемостью позволяет большие количества заряда должны храниться на очень маленьких конденсаторах. Это значительный вклад в продолжение миниатюризация электроники (например, портативных компьютеров, портативных CD-плееры, сотовые телефоны, даже слуховые аппараты!). Диэлектрическая прочность материал — это его способность постоянно удерживать электроны на высоком Напряжение. Когда конденсатор полностью заряжен, практически нет ток, проходящий через него. Но иногда очень сильные электрические поля (высокое напряжение) возбуждают большое количество электронов из валентной зоны в зона проводимости. Когда это происходит, ток течет через диэлектрик и часть накопленного заряда теряется.Это может быть сопровождается частичным разрушением материала плавлением, горение и / или испарение. Магнитный напряженность поля, необходимая для разрушения материала, составляет его диэлектрическая прочность. Некоторые керамические материалы имеют чрезвычайно высокую диэлектрическая прочность. Например, электрический фарфор может обрабатывать до 300 вольт на каждые 0,001 дюйма (мил) материала! Таблица 4 : Константы электрических свойств различных керамических материалов материалы.
|