Кремний металл – Кремний — Википедия

Содержание

Металлический профиль: кремний металл

Кремний металл

Взгляните на полуметаллический кремний!

Кремний металл — серый и блестящий полупроводящий металл, который используется для производства стали, солнечных батарей и микрочипов.

Кремний — второй по численности элемент земной коры (позади только кислорода) и восьмой наиболее распространенный элемент во Вселенной. Фактически, почти 30 процентов веса земной коры можно отнести к кремнию.

Элемент с атомным номером 14, естественно, встречается в силикатных минералах, включая кремнезем, полевой шпат и слюду, которые являются основными компонентами обычных пород, таких как кварц и песчаник.

Полуметаллический (или металлоид) кремний обладает некоторыми свойствами как металлов, так и неметаллов.

Подобно воде, но в отличие от большинства металлов, кремний заключает в жидком состоянии и расширяется по мере его затвердевания. Он имеет относительно высокие температуры плавления и кипения, а при кристаллизации образуется кристаллическая кристаллическая структура алмаза.

Критически важным для роли кремния в качестве полупроводника и его использования в электронике является атомная структура элемента, которая включает в себя четыре валентных электрона, которые позволяют кремнию легко связываться с другими элементами.

Свойства:

  • Атомный символ: Si
  • Атомный номер: 14
  • Элемент Категория: Металлоид
  • Плотность: 2,329 г / см3
  • Точка плавления: 2577 ° F (1414 ° C)
  • Точка кипения: 5909 ° F (3265 ° C)
  • Твердость Моха: 7

История:

Шведскому химику Джонсу Якову Берзерлиусу приписывают первый изолирующий кремний в 1823 году. Берцерлий выполнил это путем нагревания металлического калия (который был изолирован только десять лет назад) в тигле вместе с фторосиликатом калия.

Результатом был аморфный кремний.

Однако для получения кристаллического кремния потребовалось больше времени. Электролитический образец кристаллического кремния не будет производиться еще три десятилетия.

Первое коммерческое использование кремния было в форме ферросилиция.

После модернизации Henry Bessemer сталелитейной промышленности в середине 19 века, был большой интерес к металлургической металлургии и исследованиям в области сталелитейной техники.

К моменту первого промышленного производства ферросилиция в 1880-х годах значение кремния в улучшении пластичности в чугуне и раскисляющей стали было достаточно хорошо понято.

Раннее производство ферросилиция производилось в доменных печах путем восстановления кремнийсодержащих руд с древесным углем, что привело к серебристому чугуну, ферросилиция с содержанием кремния до 20 процентов.

Развитие электродуговых печей в начале 20-го века позволило не только увеличить производство стали, но и увеличить производство ферросилиция.

В 1903 году группа, специализирующаяся на создании ферросплавов (Compagnie Generate d’Electrochimie), начала свою деятельность в Германии, Франции и Австрии, а в 1907 году был основан первый коммерческий кремниевый завод в США.

Сталеплавильное производство не было единственным применением для соединений кремния, которые были коммерциализированы до конца XIX века.

Для производства искусственных алмазов в 1890 году Эдвард Гудрич Ачесон нагревал алюмосиликат с порошкообразным коксом и случайно производимым карбидом кремния (SiC).

Три года спустя Ачесон запатентовал свой метод производства и основал компанию Carborundum (карборунд, являющийся общим названием для карбида кремния в то время) с целью изготовления и продажи абразивных изделий.

К началу 20-го века также были реализованы проводящие свойства карбида кремния, и это соединение использовалось в качестве детектора в ранних судовых радиоприемниках. Патент на кремниевые кристаллодетекторы был предоставлен Г. В. Пикарду в 1906 году.

В 1907 году первый светоизлучающий диод (LED) был создан путем приложения напряжения к кристаллу карбида кремния.

В 1930-х годах использование кремния выросло с развитием новых химических продуктов, в том числе силанов и силиконов.

Рост электроники за прошедшее столетие также неразрывно связан с кремнием и его уникальными свойствами.

В то время как создание первых транзисторов — предшественников современных микрочипов — в 1940-х годах опиралось на германий, незадолго до того, как кремний вытеснил своего металлиста-кузена в качестве более прочного полупроводникового материала подложки.

Bell Labs и Texas Instruments начали коммерческое производство кремниевых транзисторов в 1954 году.
Первые кремниевые интегральные схемы были сделаны в 1960-х годах, и к 1970-м годам были разработаны кремниевые процессоры.

Учитывая, что кремниевая полупроводниковая технология является основой современной электроники и вычислительной техники, неудивительно, что мы ссылаемся на центр деятельности этой отрасли как «Силиконовая долина».

(Для подробного изучения истории и разработки технологий Silicon Valley и микрочипов я настоятельно рекомендую документальный фильм American Experience под названием «Силиконовая долина»).

Вскоре после открытия первых транзисторов работа Bell Labs с кремнием привела к второму крупному прорыву в 1954 году: первая кремниевая фотовольтаическая (солнечная) ячейка.

До этого мысль о том, чтобы использовать энергию солнца для создания силы на земле, считалась невозможной большинством. Но всего через четыре года, в 1958 году, первый спутник с силиконовыми солнечными батареями вращался вокруг Земли.

К 1970-м годам коммерческие приложения для солнечных технологий выросли до наземных применений, таких как включение освещения на морских нефтяных платформах и железнодорожных переездах.

За последние два десятилетия использование солнечной энергии выросло по экспоненте. Сегодня на кремниевые фотогальванические технологии приходится около 90 процентов мирового рынка солнечной энергии.

Производство

Большинство очищенных кремний каждый год — около 80 процентов — производится как ферросилиций для использования в железе и производстве стали. Ферросилиций может содержать от 15 до 90% кремния в зависимости от требований плавильного завода.

Сплав железа и кремния производится с использованием погружной электродуговой печи путем редуцирующей плавки. Измельченная в силикагеле руда и источник углерода, такой как коксующийся уголь (металлургический уголь), измельчаются и загружаются в печь вместе с металлоломом.

При температурах выше 1900 ° C (3450 ° F) углерод реагирует с присутствующим в руде кислородом, образуя газообразный монооксид углерода. Остальное железо и кремний, между тем, затем объединяются, чтобы сделать расплавленный ферросилиций, который можно собрать, постукивая по основанию печи.

После охлаждения и закалки ферросилиций можно затем отгружать и использовать непосредственно в производстве железа и стали.

Тот же метод, без включения железа, используется для получения кремния из металлургического сорта, который имеет чистоту более 99 процентов. Металлургический кремний также используется в выплавке стали, а также в производстве алюминиевых литых сплавов и силановых химикатов.

Металлургический кремний классифицируется по примесным уровням железа, алюминия и кальция, присутствующим в сплаве. Например, 553 металлический кремний содержит менее 0,5 процента каждого железа и алюминия и менее 0,3 процента кальция.

Ежегодно в мире производится около 8 миллионов метрических тонн ферросилиция, причем на долю Китая приходится около 70 процентов этой суммы. Крупными производителями являются Erdos Metallurgy Group, Ningxia Rongsheng Ferroalloy, Group OM Materials и Elkem.

Еще 2,6 миллиона метрических тонн металлургического кремния — или около 20 процентов от общего количества рафинированного кремниевого металла — производится ежегодно. Китай, опять же, составляет около 80 процентов этой продукции.

Удивительным для многих является то, что солнечные и электронные сорта кремния составляют лишь небольшое количество (менее двух процентов) всего производства очищенного кремния.

Чтобы модернизировать до кремниевого металла (поликремния) солнечного сорта, чистота должна увеличиться до чистого чистого кремния 99,9999% (6N). Это делается одним из трех способов, наиболее распространенным из которых является процесс Siemens.

Процесс Siemens включает химическое осаждение из паровой фазы летучего газа, известного как трихлорсилан. При температуре 1150 ° C (2102 ° F) трихлорсилан продувается на кремниевом семян высокой чистоты, установленном на конце стержня. По мере того как он проходит, кремний высокой чистоты из газа осаждается на семена.

Реактор с псевдоожиженным слоем (FBR) и модернизированная кремниевая технология металлургического класса (UMG) также используются для повышения качества металла до поликремния, подходящего для фотоэлектрической промышленности.

В 2013 году было произведено 230 000 метрических тонн поликремния. Ведущие производители включают GCL Poly, Wacker-Chemie и OCI.

Наконец, чтобы сделать кремний класса электроники подходящим для полупроводниковой промышленности и некоторыми фотоэлектрическими технологиями, поликремний должен быть превращен в ультрачистый монокристаллический кремний через процесс Чохральского.

Для этого поликремний расплавляют в тигле при температуре 1425 ° C (2597 ° F) в инертной атмосфере. Затем наплавленный семенной кристалл погружают в расплавленный металл и медленно поворачивают и удаляют, давая время для роста кремния на затравочном материале.

Получаемый продукт представляет собой стержень (или бул) из монокристаллического кремниевого металла, который может достигать 99,999999999 (11N) процентов чистого. Этот стержень может быть легирован бором или фосфором, если требуется, чтобы при необходимости модифицировать квантовомеханические свойства.

Монокристаллический стержень может поставляться клиентам как есть, или нарезаться в вафли, а также полироваться или текстурироваться для конкретных пользователей.

Применение

В то время как примерно 10 миллионов метрических тонн ферросилиция и кремниевого металла каждый год очищаются, большинство используемых на рынке кремния в действительности представляют собой кремниевые минералы, которые используются для производства всего, начиная с цемента, растворов и керамики, до стекла и полимеры.

Ферросилиций, как уже отмечалось, является наиболее часто используемой формой металлического кремния. С момента своего первого использования около 150 лет назад ферросилиций оставался важным раскисляющим агентом при производстве углеродистой и нержавеющей стали. Сегодня выплавка стали остается крупнейшим потребителем ферросилиция.

Тем не менее, ферросилиций имеет ряд преимуществ, помимо сталеплавильного производства. Это предварительный сплав в производстве ферросилиция магния, нодулятор, используемый для производства ковкого чугуна, а также во время процесса Пиджона для очистки магния высокой чистоты.

Ферросилиций также можно использовать для изготовления тепловых и коррозионностойких сплавов железа, а также кремниевой стали, которая используется при производстве электродвигателей и трансформаторных сердечников.

Металлургический кремний можно использовать в производстве стали, а также в качестве легирующего агента в алюминиевом литье. Алюминиево-кремниевые (Al-Si) автомобильные детали легкие и прочные, чем компоненты, отлитые из чистого алюминия. Автомобильные детали, такие как блоки двигателя и шины, являются одними из наиболее часто применяемых деталей из литого алюминия.

Почти половина всего металлургического кремния используется химической промышленностью для производства дымящегося диоксида кремния (загустителя и осушителя), силанов (связующего) и силикона (герметиков, адгезивов и смазочных материалов).

Поликремний фотовольтаического класса в первую очередь используется при изготовлении поликремниевых солнечных элементов. Для производства одного мегаватта солнечных модулей требуется около пяти тонн поликремния.

В настоящее время солнечная технология из поликремния составляет более половины солнечной энергии, производимой в глобальном масштабе, в то время как технология моносиликона составляет около 35 процентов. В общей сложности 90 процентов солнечной энергии, используемой людьми, собираются на основе кремниевой технологии.

Монокристаллический кремний также является критическим полупроводниковым материалом, найденным в современной электронике. В качестве материала подложки, используемого при производстве полевых транзисторов (FET), светодиодов и интегральных схем, кремний можно найти практически во всех компьютерах, мобильных телефонах, планшетах, телевизорах, радио и других современных коммуникационных устройствах.

По оценкам, более трети всех электронных устройств содержат полупроводниковые технологии на основе кремния.

Наконец, твердосплавный карбид кремния используется в различных электронных и неэлектронных приложениях, включая синтетические ювелирные изделия, высокотемпературные полупроводники, твердую керамику, режущие инструменты, тормозные диски, абразивы, пуленепробиваемые жилеты и нагревательные элементы.

www.norma-stab.ru

Кремний металл или неметалл

Неметаллы – элементы, наружный слой атомов которых содержит 4, 5, 6 и 7 электронов (сюда относятся также H и B). Неметаллы способны образовать отрицательно заряженные ионы, Неметаллов насчитывается 22. Все они, кроме H, относятся к p-элементам. Следовательно, ответ на вопрос «кремний металл или неметалл» прост – неметалл.
С кислородом кремний образует диоксид кремния и оксид кремния . Наибольшее значение имеет диоксид кремния, или кремниевый ангидрид.
встречается в природе в виде кварца, тридимита, кристобалита, опала, кизельгура и др.
Кварц, тридимит и кристобалит – кристаллические модификации диоксида кремния.
Кварц принадлежит к гексагональной кристаллической системе и является устойчивой кристаллической формой до ; выше он переходит в -тридимит. Он встречается в двух формах, вращающих плоскость поляризации вправо и влево и отличающихся видом граней кристаллов, являющихся зеркальным отображением друг друга. Кварц относится к числу наиболее распространенных минералов.
Тридимит относят к ромбической системе. Он устойчив в пределах .
Кристобалит принадлежит к тетрагональной системе и является устойчивым выше .

ru.solverbook.com

Как производят металлургический кремний | Как это сделано

Сегодня мы с вами отправляемся на завод Silicium Kazakhstan, который производит металлический кремний карботермическим способом с использованием специальных рудотермических печей. Это один из крупнейших заводов в стране и единственный кремниевый завод в Казахстане. Завод был запущен осенью 2010 года.

По распространенности в земной коре кремний занимает второе место после кислорода, встречается главным образом в виде кислородных соединений (кварц, силикаты и.т.д.). Кремний высокой чистоты используется в полупроводниковой технике, а технической чистоты (96–99% Si) – в черной и цветной металлургии для получения сплавов на нежелезной основе (силумина и др.), легирования (кремнистые стали и сплавы, применяемые в электрооборудовании) и раскисления стали и сплавов (удаления кислорода), производства силицидов и.т.д.

В процессе производства на заводе получают два вида продукции:
— металлический кремний (с чистотой не менее 98,5%, применяемый в алюминиевой и химической отраслях)
— кремниевую пыль (ультрадисперсный материал, получаемый в процессе газоочистки печей, он применяется в производстве особо прочных сухих строительных смесей)

2. В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 градусов цельсия в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

3. Основным агрегатом для выплавки технического кремния является дуговая рудотермическая одно-трехфазная электропечь мощностью от 8 до 25 МВА. Печь представляет собой круглый стальной кожух с днищем, футерованные огнеупорной кладкой. Подина (днище) и часть высоты стен футеруются графитовыми блоками, следующий слой магнезитовым кирпичом и внешний слой – шамотом (пористый кирпич из специальной огнеупорной глины).

4. Подача энергии в рабочее пространство печи осуществляется с помощью электрода, выполненного из графита. Самоспекающиеся электроды в технологии кремния не применяются по причине возможного загрязнения продукта компонентами кожуха электрода и электродной массы (железо, кальций, алюминий). Электрические параметры восстановительного процесса обеспечиваются с помощью печного трансформатора, соединенного с электродом высокоамперной короткой сетью, в которой сила тока составляет 40-80 кА. По мере торцевого расхода электрода они периодически удлиняется с помощью механизмов перепуска. Регулировка заданной силы тока в электроде осуществляется путем перещения электрода по вертикальной оси.

5. Выпуск кремния осуществляется практически непрерывно через лётку (отверстие в футеровке) в стальную футерованную изложницу.

6. В печи с шунтированной дугой происходит восстановление кремния из кремнезёма кварцита углеродом восстановителя. Теоретическая температура начала процесса 1670 градусов цельсия. К основным типам восстановителей относятся: древесный уголь (берёзовый, сосновый), нефтекокс, каменный уголь.

7. Из рудотермической печи, расплавленный кремний попадает в ковш из которого он переливается по формам.

8. Сейчас на заводе работает одна печь, в ближайшее время будет пущена вторая, и тогда производственная мощность завода составит 30 тыс. тонн металлургического кремния в год. Кроме этого, выпускаемая продукция в дальнейшем будет поступать на завод поликристаллического кремния: его строительство в Омске начинается в этом году. Сейчас же готовая продукция экспортируется в Евросоюз.

9. Кстати, рыночная цена металлического кремния — 2500 евро за тонну.

10. Завод потребляет огромное количество электроэнергии для поддержания температуры в печи. Производство работает круглосуточно. А при первом запуске печи на ее разогрев до рабочей температуры потребовалось около двух недель.

11. На заводе в качестве сырья для производства металлургического кремния применяется жильный кварц из Улытаутского района.

12. В формах металлический кремний охлаждается и застывает.

13. Металлический кремний является основой для высокотехнологичной промышленности. Кремний — это и фотоэлементы для солнечных батарей, и полупроводники для компьютеров, и многое, многое другое.

14. Кстати, производство металлургического кремния абсолютно безотходно. Над печью стоят воздуховоды, и вся пыль уходит в газоочистку, где улавливаются микрочастицы. Эта кремниевая пыль является полезным продуктом в другой части производства. Например, раньше в Европе кварц переплавляли только для того, чтобы его потом размолоть и добавить в бетон, в растворы, которые обладают очень большим укрепляющим свойством. Кварцевая кристаллическая решетка очень прочная. И 900-ю марку бетона можно получить только с помощью кремния. А есть еще гидроизоляционные замазки, ударопрочные полы, эта продукция используется для укрепления тоннелей метро.

15. После остывания кремний дробят на мелкие куски гидромолотом.

16. Затем готовая продукция упаковывается в бигбэги — пластиковые мешки, вмещающие 1000 килограмм металлургического кремния и отправляется заказчикам.

17. Что можно сделать с техническим кремнием? Технологическая цепочка в производстве кремния продолжается: металлургический кремний — поликремний — монокристаллический кремний — кремниевые пластины. Для дальнейшей очистки металлургический кремний перегоняют, превращая в экологически вредные соединения хлора: дихлорсилан или трихлорсилан. После очистки последних в больших ректификационных колоннах и процессов осаждения получается поликремний, где концентрация примесей не превышает десятитысячной доли процента. После этого его переплавляют в монокристаллический материал, а монокристаллы режут на пластины. Так получают до 80% монокристаллического кремния, используемого в электронике.

Источник

kak-eto-sdelano.ru

Химия кремния | CHEMEGE.RU

 

1. Положение кремния в периодической системе химических элементов
2. Электронное строение кремния
3. Физические свойства и нахождение в природе кремния
4. Качественные реакции на силикаты
5. Основные соединения кремния
6. Способы получения кремния
7. Химические свойства кремния
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и углеродом
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с щелочами
7.2.2. Взаимодействие с кислотами
7.2.3. Взаимодействие с азотной кислотой

Бинарные соединения кремния — силициды, силан и др.

Оксид кремния (IV) 
 1. Физические свойства и нахождение в природе 
2. Химические свойства
2.1. Взаимодействие с щелочами и основными оксидами
2.2. Взаимодействие с водой
2.3. Взаимодействие с карбонатами
2.4. Взаимодействие с кислотами
2.5. Взаимодействие с металлами
2.6. Взаимодействие с неметаллами

Кремниевая кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 

Силикаты 

Кремний

Положение в периодической системе химических элементов

Кремний расположен в главной подгруппе IV группы  (или в 14 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кремния

Электронная конфигурация  кремния в основном состоянии:

+14Si 1s22s22p63s23p2    

Электронная конфигурация  кремния в возбужденном состоянии:

+14Si* 1s22s22p63s13p3    

Атом кремния содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома кремния — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства, способы получения и нахождение в природе кремния 

Кремний — второй по распространенности элемент на Земле после кислорода. Встречается только в виде соединений. Оксид кремния SiO2 образует большое количество природных веществ – горный хрусталь, кварц, кремнезем.

Простое вещество кремний – атомный кристалл темно-серого цвета с металлическим блеском, довольно хрупок. Температура плавления 1415 °C, плотность 2,33 г/см3. Полупроводник.

Качественные реакции

Качественная реакция на силикат-ионы SiO32- — взаимодействие  солей-силикатов с сильными кислотами. Кремниевая кислота – слабая. Она легко выделяется из растворов солей кремниевой кислоты при действии на них более сильными кислотами.

Например, если к раствору силиката натрия прилить сильно разбавленный раствор соляной кислоты, то кремниевая кислота выделится не в виде осадка, а в виде геля. Раствор помутнеет и «застынет».

Na2SiO3 + 2HCl = H2SiO3 + 2 NaCl

Видеоопыт взаимодействия силиката натрия с соляной кислоты (получение кремниевой кислоты) можно посмотреть здесь.

Соединения кремния

Основные степени окисления кремния +4, 0 и -4.

Наиболее типичные соединения кремния:

Степень окисления Типичные соединения
+4 оксид кремния (IV) SiO2

кремниевая кислота H2SiO3

силикаты MeSiO3

бинарные соединения с неметаллами (карбид кремния SiC)

-4 силан SiH4

силициды металлов (силицид натрия Na4Si)

Способы получения кремния

В свободном состоянии кремний был получен Берцелиусом в 1822 г. Его латинское название «силиций» произошло от латинского слова «sileх», что означает «кремень». Аморфный кремний в лаборатории можно получить при прокаливании смеси металлического магния с диоксидом кремния. Для опыта диоксид кремния следует тщательно измельчить. При нагревании смеси начинается бурная реакция. Одним из продуктов этой реакции является аморфный кремний.

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

Еще один способ получения кремния в лаборатории — восстановление из оксида алюминием:

3SiO2 + 4Al → 3Si + 2Al2O3

В промышленности использовать дорогие алюминий и магний неэффективно, поэтому используют другие, более дешевые способы:

1. Восстановление из оксида коксом в электрических печах:

SiO2 + 2C → Si + 2CO

Однако в таком процессе процессе образующийся кремний загрязнен примесями карбидов кремния, и для производства, например, микросхем уже не подходит.

2. Наиболее чистый кремний получают восстановлением тетрахлорида кремния водородом при 1200 °С:

SiCl4 +2H2 → Si + 4HCl

или цинком:

SiCl4 + 2Zn → Si + 2ZnCl2

3. Также чистый кремний получается при разложении силана:

SiH4 → Si + 2H2

Химические свойства

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами, и с неметаллами.

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

Si  +  2F2  → SiF4

При нагревании кремний реагирует с хлором, бромом, йодом:

Si   +   2Cl2  →   SiCl4

Si    +   2Br→   SiBr4

1.2. При сильном нагревании (около 2000оС) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C   +   Si  → SiC

При температуре выше 600°С взаимодействует с серой:

Si   +   2S   →  SiS2

1.3. Кремний не взаимодействет с водородом.

1.4. С азотом кремний реагирует в очень жестких условиях:

3Si  + 2N→  Si3N4

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si    +   2Mg   →    Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом:

Si   +   O2   →  SiO2 

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

Si    +   2NaOH   +   H2O   →   Na2SiO3   +   2H2

2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:

Si    +   6HF  →   H2[SiF6]    +   2H2

При обработке кремния безводным фтороводородом комплекс не образуется:

Si(тв.)    +   4HF(г.)   =   SiF4    +   2H2

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот:

3Si    +   4HNO +   12HF   →  3SiF4   +   4NO   +   8H2O

Бинарные соединения кремния

Силициды металлов

Силициды – это бинарные соединения кремния с металлами, в которых кремний имеет степень окисления -4. Химическая связь в силицидах металлов — ионная.

Силициды, как правило, легко гидролизуются в воде или в кислой среде.

Например, силицид магния разлагается водой на гидроксид магния и силан:

Mg2Si   +   4H2O   →  2Mg(OH)2   +   SiH4

Соляная кислота легко разлагает силицид магния:

Mg2Si   +   4HCl   →  2MgCl2   +   SiH4

Получают силициды сплавлением простых веществ или восстановлением смеси оксидов коксом в электропечах:

2Mg + Si → Mg2Si

2MgO + SiO2 + 4C → Mg2Si + 4CO

Силан

Силан – это бинарное соединение кремния с водородом SiH4, ядовитый бесцветный газ.

Если поместить порошок силицида магния в очень слабый раствор соляной кислоты, то на поверхности раствора образуются пузырьки газа. Они лопаются и загораются на воздухе. Это горит силан. Он образуется при взаимодействии кислоты с силицидом магния:

Mg2Si + 4HCl → 2MgCl2 + SiH4

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

На воздухе силан горит с образованием SiO2 и H2O:

SiH4    +    2O2  → SiO2   +   2H2O

Видеоопыт сгорания силана можно посмотреть здесь.

Силан разлагается водой разлагается с выделением водорода:

SiH4    +   2H2O   →  SiO +  4H2

Силан разлагается (окисляется) щелочами:

SiH4    +   2NaOH   +   H2O   →   Na2SiO3   +   4H2

Силан при нагревании разлагается:

SiH4 → Si + 2H2

Карбид кремния

В соединениях кремния с неметаллами — ковалентная связь.

Рассмотрим карбид кремния – карборунд Si+4C-4. Это вещество с атомной кристаллической решеткой. Он имеет структуру, подобную структуре алмаза и характеризуется высокой твердостью и температурой плавления, а также высокой химической устойчивостью.

Карборунд окисляется кислородом при высокой температуре:

SiC +2O2 → SiO2 + CO2

Карборунд окисляется кислородом в расплаве щелочи:

SiC + 2O2 + 4NaOH → Na2SiO3 + Na2CO3 + 2H2O

Галогениды кремния

Хлорид и фторид кремния – галогенангидриды кремниевой кислоты.
SiCl4.

Получают галогениды кремния действием хлора на сплав оксида кремния с углем:

SiO2 + C + Cl2  →  SiCl4 + CO

Галогениды кремния разлагаются водой до кремниевой кислоты и хлороводорода:

SiCl4   +   3H2O   →  H2SiO3    +   4HCl

Хлорид кремния (IV) восстанавливается водородом:

SiCl +   2H2  →   Si  +   4HCl

Оксид кремния (IV)

Физические свойства и нахождение в природе

Оксид кремния (IV)  –  это твердое вещество с атомной кристаллической решеткой. В природе встречается в виде кварца, речного песка, кремнезема и прочих модификаций:

Химические свойства

Оксид кремния (IV) – типичный кислотный оксид. За счет кремния со степенью окисления +4 проявляет слабые окислительные свойства.

1. Как кислотный оксид, диоксид кремния (IV) взаимодействует с растворами и расплавами щелочей и в расплаве с основными оксидами. При этом образуются силикаты.

Например, диоксид кремния взаимодействует с гидроксидом калия:

SiO2   +  2KOH   →    K2SiO +   H2

Еще пример: диоксид кремния взаимодействует с оксидом кальция.

SiO2   +   CaO   →   CaSiO3

2. Оксид кремния (IV) не взаимодействует с водой, т.к. кремниевая кислота нерастворима.

3. Оксид кремния (IV) реагирует при сплавлении с карбонатами щелочных металлов. При этом работает правило: менее летучий оксид вытесняет более летучий оксид из солей при сплавлении.

Например, оксид кремния (IV) взаимодействует с карбонатом калия. При этом образуется силикат калия и углекислый газ:

SiO2 + K2CO3  → K2SiO3 + CO2

4. Из кислот диоксид кремния реагирует только с плавиковой или с газообразным фтороводородом:

SiO2 + 6HF(г) = SiF+ H2O

SiO2 + 6HF(р-р) → H2[SiF6] + 2H2O

5. При температуре выше 1000 °С оксид кремния реагирует с активными металлами, при этом образуется кремний.

Например, оксид кремния взаимодействует с магнием с образованием кремния и оксида магния:

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

При избытке восстановителя образуются силициды:

SiO2 + 4Mg → Mg2Si + 2MgO

6. Оксид кремния (IV) взаимодействует с неметаллами.

Например, оксид кремния (IV) реагирует с водородом в жестких условиях. При этом оксид кремния проявляет окислительные свойства:

SiO2 + 2Н2 → Si + 2Н2O

Еще пример: оксид кремния взаимодействует с углеродом. При этом образуется карборунд и угарный газ:

SiO2   +   3С → SiС   +   2СО

При сплавлении оксид кремния взаимодействует с фосфатом кальция и углем:

3SiO2     +   Ca3(PO4)2    +   5C   →     3CaSiO3    +    5CO    +   2P

Кремниевая кислота

Строение молекулы и физические свойства

Кремниевые кислоты — очень слабые, малорастворимые в воде соединения общей формулы nSiO2•mH2O. Образует колоидный раствор в воде.

Метакремниевая H2SiOсуществует в растворе в виде полимера:

Способы получения

Кремниевая кислота образуется при действии сильных кислот на растворимые силикаты (силикаты щелочных металлов).

Например, при действии соляной кислоты на силикат натрия:

Na2SiO3 + 2HCl  H2SiO3 + 2 NaCl

Видеоопыт получения кремниевой кислоты из силиката натрия можно посмотреть здесь.

Даже слабая угольная кислота вытесняет кремниевую кислоту из солей:

Na2SiO3 + 2Н2O + 2CO2 → 2NaHCO3 + H2SiO3

Химические свойства

1. Кремниевая кислота — нерастворимая. Кислотные свойства выражены очень слабо, поэтому кислота реагирует только с сильными основаниями и их оксидами:

Например, кремниевая кислота реагирует с концентрированным гидркосидом калия:

H2SiO3 +4KOH → K2SiO3 + 4H2O

2. При нагревании кремниевая кислота разлагается на оксид и воду:

H2SiO3  →  SiO2 + H2O

Силикаты

Силикаты — это соли кремниевой кислоты.  Большинство силикатов нерастворимо в воде, кроме силикатов натрия и калия, их называют «жидким стеклом».

Способы получения силикатов:

1. Растворение кремния, кремниевой кислоты или оксида в щелочи:

H2SiO3 + 2KOH → K2SiO3 + 2H2O

Si + 2NaOH + H2O → Na2SiO3 + H2

SiO2 + 2KOH → K2SiO3 + H2O

2. Сплавление с основными оксидами:

СаО   +   SiO2   →   CaSiO3

3.  Взаимодействие растворимых силикатов с солями:

K2SiO3 + CaCl2    →    CaSiO3 + 2KCl

Оконное стекло (натриевое стекло) — силикат натрия и кальция: Na2O·CaO·6SiO2.

Стекло получают при сплавлении в специальных печах смеси соды Na2CO3, известняка CaCO3 и белого песка SiO2:

6SiO2 + Na2CO3 + CaCO3 → Na2O·CaO·6SiO2 + 2CO2

Для получения специального стекла вводят различные добавки, так стекло содержащее ионы Pb2+ – хрусталь; Cr3+ – имеет зеленую окраску, Fe3+ – коричневое бутылочное стекло, Co2+ – дает синий цвет, Mn2+ – красновато-лиловый.

Поделиться ссылкой:

chemege.ru

Кремний металлический

Сортировать по:

Сортировать по:

Артикул: нет

Кремний КСД-3Б слитки

  • Синонимы

    кристаллический кремний

  • Формула

    Si

  • ГОСТ или ТУ

    ТУ 48-4-258-80

  • Чистота

    99,999%

  • Минимальная партия на продажу

    1кг

ПараметрыСкрыть

Всегда в наличии на складе в Москве различные виды кремния. Различные марки, чистота, формы. Быстрая доставка. У нас самый большой в России ассортимент видов металлического кремния: слитки, стержни, цилиндры, порошки, скрап, бой, обрезки, пот-скрап. Монокристаллический, поликристаллический, бестигельный, мультикремний. Солнечного, электронного и т.д. качества. Диаметр слитков, пластин от 1см до 20см, длина цилиндров от 3см до 30см. Чистота от технического до особо чистого. По фракционному составу порошков: это могут быть порошки от 1мкм до 400мкм. Размер скрапа и боя кремния от 1см до 20см. Если вы не нашли нужный вам кремний обратитесь к нашим специалистам, они помогут. Ниже по ссылкам можно оставить отзывы о товаре и о компании

ochv.ru

Металлический кремний — Большая Энциклопедия Нефти и Газа, статья, страница 1

Металлический кремний

Cтраница 1

Металлический кремний при высокой температуре в вакууме восстанавливает оксид бария до бария.
 [1]

Металлический кремний поглощает при этом окись углерода с образованием оксикарбидов кремния, которые, подобно вышеупомянутым азотистым соединениям кремния, связывают карбид кремния в чрезвычайно твердое, плотное тело. При дальнейшем нагреве примерно до 1600 — 1700 свободный углерод, имеющийся в заформованных изделиях, восстанавливает до карбида кремния оксикарбиды последних, образовавшиеся в результате действия окиси углерода на металлический кремний. Этот вновь образованный вторичный карбид кремния связыйает имевшийся в массе уже до того первичный карбид кремния в прочные фасонные изделия, которые, при правильном выборе компонентов смеси, состоят только из карбида кремния. Таким путем приготовляется электросопротивление, обладающее необходимыми для электронагревателя качествами, а именно — высокой жароупорностью, значительной сопротивляемостью действию атмосферного воздуха и большим удельным электрическим сопротивлением, значение которого может быть изменено в широких пределах.
 [2]

Продукт хлорирования металлического кремния и ферросилиция — прозрачная бесцветная или желтовая жидкость. Хранят в стальных цистернах и другой таре, не допуская действия солнечных лучей.
 [3]

При действии металлического кремния в щелочной среде на антра-хинон получается диантрол [ А.
 [4]

Получают хлорированием металлического кремния и ферросилиция.
 [5]

При введении металлического кремния в шихту вместе с углеродом и карбидом кремния и последующем спекании кремний плавится.
 [7]

Размер частиц металлического кремния также заметно влияет на химическую активность контактной массы: в случае грубого помола реакционная способность порошка ниже требуемой, а при очень тонком помоле реакционная способность резко повышается и приходится интенсивно отводить тепло из зоны реакции.
 [8]

Во время такого обжига металлический кремний поглощает азот с образованием азотистых соединений кремния, либо, в случае введения в исходную массу карбонизующихся связок — с образованием карбоазотистых соединений кремния. Эти азотистые соединения кремния связывают карбид кремния в чрезвычайно плотные и прочные образования.
 [9]

При взаимодействии хлоралканов с металлическим кремнием в присутствии меди при 300 — 450 С происходит Si-алкилиро-вание с образованием сложной смеси продуктов.
 [10]

Токсикологические опасности, связанные с металлическим кремнием, на данный момент не выявлены. С точки зрения наиболее общих норм он рассматривается как пыль негативного воздействия. Процесс приготовления и очистки кремния должен проходить в закрытой, газонепроницаемой зоне, что должно ограничить его воздействие. Опасности могут происходить от химикатов, которые используются в сочетании с кремнием в различных производственных процессах. Здесь необходимо иметь в виду три типа кремниевых соединений: силаны, силоксаны и гетеросилоксаны.
 [11]

При взаимодействии хлористых алкилов с металлическим кремнием в присутствии меди при 300 — 450 С происходит Si-алкилиро-вание с образованием сложной смеси продуктов.
 [12]

На основе карбида кремния пропиткой металлическим кремнием получают кермет, обладающий хорошими свойствами — высокой жаропрочностью, хорошей теплопроводностью и малой плотностью.
 [13]

При взаимодействии хлористых алкилов с металлическим кремнием в присутствии меди при 300 — 450 С происходит Si-алкилиро-вание с образованием сложной смеси продуктов.
 [14]

Уменьшение количества выделяемого тепла при хлорировании металлического кремния или ферросилиция достигается использованием в качестве хлорирующего агента хлористого водорода. При этом получают смесь SiHCls и SiCU. Соотношение этих компонентов зависит от температуры реакции.
 [15]

Страницы:  

   1

   2

   3

   4




www.ngpedia.ru

Кремний — это… Что такое Кремний?

        Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).

         Историческая справка. Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, — изготовление стекла (См. Стекло) началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. — двуокись SiO2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввёл Г. И. Гесс в 1834.
         Распространённость в природе. По распространённости в земной коре К. — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём SiO2 в форме минерала Кварца и его разновидностей. 75% литосферы слагают различные Силикаты и Алюмосиликаты (полевые шпаты, слюды, амфиболы и т.

д.). Общее число минералов, содержащих кремнезём, превышает 400 (см. Кремнезёма минералы).

         При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость SiO2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

         Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431Å, плотностью 2,33 г/см3. При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см3. К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20—100°С) 800 дж/(кгК), или 0,191 кал/(гград); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84—126 вт/(мК), или 0,20—0,30 кал/(смсекград). Температурный коэффициент линейного расширения 2,33․10-6 К-1; ниже 120K становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ=6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость —0,13․10-6. Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м2 (240 кгс/мм2), модуль упругости 109 Гн/м2 (10890 кгс/мм2), коэффициент сжимаемости 0,325․10-6 см2/кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

         К. — полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3․103омм (2,3․105омсм).

         Полупроводниковый К. с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

         В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s22s22p63s23p2 (см. Атом). Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33Å, ковалентный радиус 1,17Å, ионные радиусы Si4+ 0,39Å, Si4- 1,98Å.

         В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу [SiF6]2-).

         Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si—O, равная 464 кдж/моль (111 ккал/моль), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si—Si мала, 176 кдж/моль (42 ккал/моль); в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя Кремния двуокись SiO2. Известна также моноокись SiO, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь Si и SiO2. К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании с образованием соединений общей формулы SiX4 (см. Кремния галогениды). Водород непосредственно не реагирует с К., и Кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов — Силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (Кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si (CH3)3CI], служащих для синтеза многочисленных кремнийорганических соединений (См. Кремнийорганические соединения).
         К. образует соединения почти со всеми металлами — Силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

         Получение и применение. К. технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

         Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. — метод Чохральского).

         Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике (см. также Кварц).

         К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

         В. П. Барзаковский.

         Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях — известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1—0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание — Силикоз.

         В. В. Ковальский.

        

         Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники — германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1—2, М., 1969—70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; Wolf Н. F., Silicon semiconductor data, Oxf. — N. Y., 1965.



dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о