Молекула кремния – Кремний и его характеристики

Содержание

Кремний и его характеристики

Общая характеристика кремния

Кремний – один из самых распространенных в земной коре элементов. Он составляет 27% (мас.) доступной нашему исследованию части земной коры, занимая по распространенности второе место после кислорода. В природе кремний встречается только в соединениях: в виде диоксида кремния SiO2, называемого кремниевым ангидридом или кремнеземом, в виде солей кремниевых кислот (силикатов). Наиболее широко в природе распространены алюмосиликаты, т.е. силикаты, в состав которых входит алюминий. К ним относятся полевые шпаты, слюды, каолин и др.

Как углерод, входя в состав всех органических веществ, кремний является важнейшим элементом растительного и животного царства.

В обычных условиях кремний представляет собой вещество темно-серого цвета (рис. 1). По внешнему виду похож на металл. Тугоплавок – температура плавления равна 1415oС. Характеризуется высокой твердостью.

Рис. 1. Кремний. Внешний вид.

Атомная и молекулярная масса кремния

Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кремний существует в виде одноатомных молекул Si, значения его атомной и молекулярной масс совпадают. Они равны 28,084.

Аллотропия и аллотропные модификации кремния

Кремний может существовать в виде двух аллотропных модификаций: алмазоподобной (кубической) (устойчивая) и графитоподобной (неустойчивая). Алмазоподобный кремний находится в твердом агрегатном состоянии, а графитоподобный – в аморфном. Они также различаются по внешнему виду и химической активности.

Кристаллический кремний представляет собой вещество темно-серого цвета с металлическим блеском, а аморфный – порошок бурого цвета. Вторая модификация обладает большей реакционной способностью, чем первая.

Изотопы кремния

Известно, что в природе кремний может находиться в виде трех стабильных изотопов 28Si, 29Si и 30Si. Их массовые числа равны 28, 29 и 30 соответственно. Ядро атома изотопа кремния 28Si содержит четырнадцать протонов и четырнадцать нейтронов, а изотопов 29Si и 30Si – такое же количество протонов, пятнадцать и шестнадцать нейтронов соответственно.

Существуют искусственные изотопы кремния с массовыми числами от 22- х до 44-х, среди которых наиболее долгоживущим является 32Si с периодом полураспада равным 170 лет.

Ионы кремния

На внешнем энергетическом уровне атома кремния имеется четыре электрона, которые являются валентными:

1s22s22p63s22.

В результате химического взаимодействия кремний может отдавать свои валентные электроны, т.е. являться их донором и превращаться в положительно заряженный ион, или принимать электроны от другого атома, т.е. быть акцептором, и превращается в отрицательно заряженный ион:

Si0 -4e → Si4+;

Si0 +4e → Si4-.

Молекула и атом кремния

В свободном состоянии кремний существует в виде одноатомных молекул Si. Приведем некоторые свойства, характеризующие атом и молекулу кремния:

Энергия ионизации атома, эВ

8,15

Относительная электроотрицательность

1,90

Радиус атома, нм

0,132

Сплавы кремния

Кремний используется в металлургии. Он служит составной частью многих сплавов. Важнейшие из них – это сплавы на основе железа, меди и алюминия.

Примеры решения задач

ru.solverbook.com

Кремний — Традиция

Кремний (Si)
Атомный номер \(~14\)
  • Категория элемента — металлоид;
  • Внешний вид простого вещества;
  • В аморфной форме — коричневый порошок;
  • В кристаллической — тёмно-серый,

слегка блестящий порошок.

Свойства атома
Атомная масса
(молярная масса)
28,0855 а. е. м. (г/моль)
Радиус атома132 пм
Энергия ионизации
(первый электрон)
786,0(8,15) кДж/моль (эВ)
Электронная конфигурация[Ne] 3s2 3p2
Химические свойстваa
Ковалентный радиус111 пм
Радиус иона42(+4e)271(-4e)[[ пм
Электроотрицательность
(по Полингу)
1,90
Электродный потенциал0
Степени окисления+4, −4, +2
Термодинамические свойства простого вещества
Плотность2,33 г/см³
Удельная теплоёмкость19,8 Дж/(K·моль)
Теплопроводность149 Вт/(м·K)
Температура плавления1688 K
Теплота плавления50,6 кДж/моль
Температура кипения2623K
Теплота испарения383 кДж/моль
Молярный объём12,1 см³/моль
Кристаллическая решётка
Структура решёткиалмаз
Период решётки5,430 Å
Отношение c/an/a
Подвижность электронов0,15 м²/в·с.
Температура Дебая625,00 K

Кре́мний (греч. Kremnos — «утёс, гора») — химический элемент с атомным номером \(~14\) в периодической системе, обозначается символом \(~Si\) (лат. Silicium), металл.

В чистом виде был выделен в 1811 году французскими учеными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром. В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российским химиком Германом Ивановичем Гессом.

Нахождение в природе[править]

По распространённости в земной коре кремний среди всех элементов занимает второе место (после кислорода). Масса земной коры на 27,6—29,5 % состоит из кремния. Кремний входит в состав нескольких сотен различных природных силикатов и алюмосиликатов. Больше всего распространен кремнезём — многочисленные формы диоксида кремния (IV) SiO2 (речной песок, кварц, кремень и др.), составляющий около 12 % земной коры (по массе). В свободном виде кремний в природе не встречается, хотя одна четвертая земли состоит из кремния.

В промышленности кремний получают, восстанавливая расплав SiO2коксом при температуре около 1800 °C в дуговых печах. Чистота полученного таким образом кремния составляет около 99,9 %. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C. Содержание примесей в получаемом этими методами кремнии снижается до 10

-8-10-6% по массе.

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым. Крупнейшим производителем кремния в России является ОК Русал[1] — кремний производится на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область).

Физические свойства[править]

Кристаллическая структура кремния.

Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению начиная с длинны волны 1.1 микрометр. Обладая самым высоким коэффициетом преломления (n = 3,4), прозрачностью, пропусканию инфракрасеых лучей он нашёл широкое применение в изготовлении оптических систем (объективов, биноклей ночного видения, в медицине — контактных линз и т.д.)

Схематическое изображение зонной структуры кремния [1]

Электрофизические свойства[править]

Элементарный кремний — типичный непрямозонный полупроводник. Ширина запрещенной зоны при комнатной температуре 1,12 эВ, а при Т = 0 К составляет 1,21 эВ

[2]. Концентрация носителей заряда в кремнии с собственной проводимостью при комнатной температуре 1,5·1016м-3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.

Подвижность электронов 0,15 м²/в·с (или 1500 cм²/в·с ).[3]

Химические свойства[править]

Схема атома кремния

В соединениях кремний склонен проявлять степень окисления +4 или −4, так как для атома кремния более характерно состояние sp³-гибридизации орбиталей. Поэтому во всех соединениях, кроме оксида кремния (II) SiO, кремний четырёхвалентен.

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500°C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.

С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:

Ca2Si + 4HCl → 2CaCl2 + SiH4↑.

Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).

С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiС (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.

При нагревании кремния с металлами возникают силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.

При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II) SiO.

Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.

В настоящее время кремний — основной материал для электроники и солнечной энергетики. Монокристаллический кремний — материал для зеркал газовых лазеров. Иногда кремний (технической чистоты) и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях. Соединения металлов с кремнием — силициды, являются широкоупотребляемыми в промышленности (например электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.), а также силициды ряда элементов являются важными термоэлектрическими материалами. Кремний применяется в металлургии при выплавке чугуна, сталей, бронз, силумина и др. (как раскислитель и модификатор, а также как легирующий компонент). Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс, стеклокерамику (ситаллы) и изделия из них.

Ядерная энергетика[править]

Медицина[править]

Оптика[править]

Плоско-выпуклая линза Линзы контактные
  • Линзы контактные

Линзы из органических полимеров дают возможность создавать недорогие асферические линзы с помощью литья. В области офтальмологии созданы мягкие контактные линзы. Их производство основано на применении оптическиих полимерных материалов материалов (ОПМ), имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля.

  • Линзы из кремния

Линзы из кремния или рентгеновская оптика преломления — линзы, изготовленные из однородного кремния, прозрачные для инфракрасного излучения, рентгеновсого излучения, преломляющие Х-лучи.

В настоящее время нашли применение линзы из кремния. Это связано с современным уровнем технологий обработки твёрдых кристаллов и самое важное, кремний сочетает сверхнизкую! дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4! в диапазоне ИК-излучения; линзы из кремния прозрачны к Х-лучам и способны их преломлять, фокусировать (мягкие и жёсткие Х-лучи), что в последнее время находят широкое применение в микроскопии, телескопии, вытесняя рентгеновскую дорогостоящую оптику с применением зеркал и оптических систем «скользящего» преломления Х-лучей. Они полностью непрозрачны в видимом диапазоне спектра. Кроме этого кремний обладает способностью создавать материалы, имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля. Что делает его самым перспективным в изготовлении мягких контактных линз. [5]

Биологическая роль[править]

Для некоторых организмов кремний является важным биогеным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1-2)·10-2% кремния, костная ткань — 17·10-4%, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в лёгкие, кристаллизуются в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь — силикоз. Чтобы не допустить попадания в лёгкие опасной пыли, следует использовать для защиты органов дыхания респиратор.

  1. ↑ Р Смит., Полупроводники: Пер. с англ. — М.: Мир, 1982. — 560 с, ил.
  2. ↑ Зи С., Физика полупроводниковых приборов: В 2-х книгах. Кн. 1. Пер. с англ. — М.: Мир, 1984. — 456 с, ил.
  3. ↑ http://www.lenta.ru/news/2008/01/22/graphene/
  4. ↑ В.В.Аристов, Л.Г.Шабельников Успехи физических наук, январь 2008г.,Том178, №1
  5. ↑ http://www.nsc.ru/HBC/hbc.phtml?15+320+1


traditio.wiki

Химия кремния | CHEMEGE.RU

 

1. Положение кремния в периодической системе химических элементов
2. Электронное строение кремния
3. Физические свойства и нахождение в природе кремния
4. Качественные реакции на силикаты
5. Основные соединения кремния
6. Способы получения кремния
7. Химические свойства кремния
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и углеродом
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с щелочами
7.2.2. Взаимодействие с кислотами
7.2.3. Взаимодействие с азотной кислотой

Бинарные соединения кремния — силициды, силан и др.

Оксид кремния (IV) 
 1. Физические свойства и нахождение в природе 
2. Химические свойства
2.1. Взаимодействие с щелочами и основными оксидами
2.2. Взаимодействие с водой
2.3. Взаимодействие с карбонатами
2.4. Взаимодействие с кислотами
2.5. Взаимодействие с металлами
2.6. Взаимодействие с неметаллами

Кремниевая кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 

Силикаты 

Кремний

Положение в периодической системе химических элементов

Кремний расположен в главной подгруппе IV группы  (или в 14 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кремния

Электронная конфигурация  кремния в основном состоянии:

+14Si 1s22s22p63s23p2    

Электронная конфигурация  кремния в возбужденном состоянии:

+14Si* 1s22s22p63s13p3    

Атом кремния содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома кремния — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства, способы получения и нахождение в природе кремния 

Кремний — второй по распространенности элемент на Земле после кислорода. Встречается только в виде соединений. Оксид кремния SiO2 образует большое количество природных веществ – горный хрусталь, кварц, кремнезем.

Простое вещество кремний – атомный кристалл темно-серого цвета с металлическим блеском, довольно хрупок. Температура плавления 1415 °C, плотность 2,33 г/см3. Полупроводник.

Качественные реакции

Качественная реакция на силикат-ионы SiO32- — взаимодействие  солей-силикатов с сильными кислотами. Кремниевая кислота – слабая. Она легко выделяется из растворов солей кремниевой кислоты при действии на них более сильными кислотами.

Например, если к раствору силиката натрия прилить сильно разбавленный раствор соляной кислоты, то кремниевая кислота выделится не в виде осадка, а в виде геля. Раствор помутнеет и «застынет».

Na2SiO3 + 2HCl = H2SiO3 + 2 NaCl

Видеоопыт взаимодействия силиката натрия с соляной кислоты (получение кремниевой кислоты) можно посмотреть здесь.

Соединения кремния

Основные степени окисления кремния +4, 0 и -4.

Наиболее типичные соединения кремния:

Степень окисленияТипичные соединения
+4оксид кремния (IV) SiO2

кремниевая кислота H2SiO3

силикаты MeSiO3

бинарные соединения с неметаллами (карбид кремния SiC)

-4силан SiH4

силициды металлов (силицид натрия Na4Si)

Способы получения кремния

В свободном состоянии кремний был получен Берцелиусом в 1822 г. Его латинское название «силиций» произошло от латинского слова «sileх», что означает «кремень». Аморфный кремний в лаборатории можно получить при прокаливании смеси металлического магния с диоксидом кремния. Для опыта диоксид кремния следует тщательно измельчить. При нагревании смеси начинается бурная реакция. Одним из продуктов этой реакции является аморфный кремний.

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

Еще один способ получения кремния в лаборатории — восстановление из оксида алюминием:

3SiO2 + 4Al → 3Si + 2Al2O3

В промышленности использовать дорогие алюминий и магний неэффективно, поэтому используют другие, более дешевые способы:

1. Восстановление из оксида коксом в электрических печах:

SiO2 + 2C → Si + 2CO

Однако в таком процессе процессе образующийся кремний загрязнен примесями карбидов кремния, и для производства, например, микросхем уже не подходит.

2. Наиболее чистый кремний получают восстановлением тетрахлорида кремния водородом при 1200 °С:

SiCl4 +2H2 → Si + 4HCl

или цинком:

SiCl4 + 2Zn → Si + 2ZnCl2

3. Также чистый кремний получается при разложении силана:

SiH4 → Si + 2H2

Химические свойства

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами, и с неметаллами.

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

Si  +  2F2  → SiF4

При нагревании кремний реагирует с хлором, бромом, йодом:

Si   +   2Cl2  →   SiCl4

Si    +   2Br→   SiBr4

1.2. При сильном нагревании (около 2000оС) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C   +   Si  → SiC

При температуре выше 600°С взаимодействует с серой:

Si   +   2S   →  SiS2

1.3. Кремний не взаимодействет с водородом.

1.4. С азотом кремний реагирует в очень жестких условиях:

3Si  + 2N→  Si3N4

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si    +   2Mg   →    Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом:

Si   +   O2   →  SiO2 

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

Si    +   2NaOH   +   H2O   →   Na2SiO3   +   2H2

2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:

Si    +   6HF  →   H2[SiF6]    +   2H2

При обработке кремния безводным фтороводородом комплекс не образуется:

Si(тв.)    +   4HF(г.)   =   SiF4    +   2H2

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот:

3Si    +   4HNO +   12HF   →  3SiF4   +   4NO   +   8H2O

Бинарные соединения кремния

Силициды металлов

Силициды – это бинарные соединения кремния с металлами, в которых кремний имеет степень окисления -4. Химическая связь в силицидах металлов — ионная.

Силициды, как правило, легко гидролизуются в воде или в кислой среде.

Например, силицид магния разлагается водой на гидроксид магния и силан:

Mg2Si   +   4H2O   →  2Mg(OH)2   +   SiH4

Соляная кислота легко разлагает силицид магния:

Mg2Si   +   4HCl   →  2MgCl2   +   SiH4

Получают силициды сплавлением простых веществ или восстановлением смеси оксидов коксом в электропечах:

2Mg + Si → Mg2Si

2MgO + SiO2 + 4C → Mg2Si + 4CO

Силан

Силан – это бинарное соединение кремния с водородом SiH4, ядовитый бесцветный газ.

Если поместить порошок силицида магния в очень слабый раствор соляной кислоты, то на поверхности раствора образуются пузырьки газа. Они лопаются и загораются на воздухе. Это горит силан. Он образуется при взаимодействии кислоты с силицидом магния:

Mg2Si + 4HCl → 2MgCl2 + SiH4

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

На воздухе силан горит с образованием SiO2 и H2O:

SiH4    +    2O2  → SiO2   +   2H2O

Видеоопыт сгорания силана можно посмотреть здесь.

Силан разлагается водой разлагается с выделением водорода:

SiH4    +   2H2O   →  SiO +  4H2

Силан разлагается (окисляется) щелочами:

SiH4    +   2NaOH   +   H2O   →   Na2SiO3   +   4H2

Силан при нагревании разлагается:

SiH4 → Si + 2H2

Карбид кремния

В соединениях кремния с неметаллами — ковалентная связь.

Рассмотрим карбид кремния – карборунд Si+4C-4. Это вещество с атомной кристаллической решеткой. Он имеет структуру, подобную структуре алмаза и характеризуется высокой твердостью и температурой плавления, а также высокой химической устойчивостью.

Карборунд окисляется кислородом при высокой температуре:

SiC +2O2 → SiO2 + CO2

Карборунд окисляется кислородом в расплаве щелочи:

SiC + 2O2 + 4NaOH → Na2SiO3 + Na2CO3 + 2H2O

Галогениды кремния

Хлорид и фторид кремния – галогенангидриды кремниевой кислоты.
SiCl4.

Получают галогениды кремния действием хлора на сплав оксида кремния с углем:

SiO2 + C + Cl2  →  SiCl4 + CO

Галогениды кремния разлагаются водой до кремниевой кислоты и хлороводорода:

SiCl4   +   3H2O   →  H2SiO3    +   4HCl

Хлорид кремния (IV) восстанавливается водородом:

SiCl +   2H2  →   Si  +   4HCl

Оксид кремния (IV)

Физические свойства и нахождение в природе

Оксид кремния (IV)  –  это твердое вещество с атомной кристаллической решеткой. В природе встречается в виде кварца, речного песка, кремнезема и прочих модификаций:

Химические свойства

Оксид кремния (IV) – типичный кислотный оксид. За счет кремния со степенью окисления +4 проявляет слабые окислительные свойства.

1. Как кислотный оксид, диоксид кремния (IV) взаимодействует с растворами и расплавами щелочей и в расплаве с основными оксидами. При этом образуются силикаты.

Например, диоксид кремния взаимодействует с гидроксидом калия:

SiO2   +  2KOH   →    K2SiO +   H2

Еще пример: диоксид кремния взаимодействует с оксидом кальция.

SiO2   +   CaO   →   CaSiO3

2. Оксид кремния (IV) не взаимодействует с водой, т.к. кремниевая кислота нерастворима.

3. Оксид кремния (IV) реагирует при сплавлении с карбонатами щелочных металлов. При этом работает правило: менее летучий оксид вытесняет более летучий оксид из солей при сплавлении.

Например, оксид кремния (IV) взаимодействует с карбонатом калия. При этом образуется силикат калия и углекислый газ:

SiO2 + K2CO3  → K2SiO3 + CO2

4. Из кислот диоксид кремния реагирует только с плавиковой или с газообразным фтороводородом:

SiO2 + 6HF(г) = SiF+ H2O

SiO2 + 6HF(р-р) → H2[SiF6] + 2H2O

5. При температуре выше 1000 °С оксид кремния реагирует с активными металлами, при этом образуется кремний.

Например, оксид кремния взаимодействует с магнием с образованием кремния и оксида магния:

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

При избытке восстановителя образуются силициды:

SiO2 + 4Mg → Mg2Si + 2MgO

6. Оксид кремния (IV) взаимодействует с неметаллами.

Например, оксид кремния (IV) реагирует с водородом в жестких условиях. При этом оксид кремния проявляет окислительные свойства:

SiO2 + 2Н2 → Si + 2Н2O

Еще пример: оксид кремния взаимодействует с углеродом. При этом образуется карборунд и угарный газ:

SiO2   +   3С → SiС   +   2СО

При сплавлении оксид кремния взаимодействует с фосфатом кальция и углем:

3SiO2     +   Ca3(PO4)2    +   5C   →     3CaSiO3    +    5CO    +   2P

Кремниевая кислота

Строение молекулы и физические свойства

Кремниевые кислоты — очень слабые, малорастворимые в воде соединения общей формулы nSiO2•mH2O. Образует колоидный раствор в воде.

Метакремниевая H2SiOсуществует в растворе в виде полимера:

Способы получения

Кремниевая кислота образуется при действии сильных кислот на растворимые силикаты (силикаты щелочных металлов).

Например, при действии соляной кислоты на силикат натрия:

Na2SiO3 + 2HCl  H2SiO3 + 2 NaCl

Видеоопыт получения кремниевой кислоты из силиката натрия можно посмотреть здесь.

Даже слабая угольная кислота вытесняет кремниевую кислоту из солей:

Na2SiO3 + 2Н2O + 2CO2 → 2NaHCO3 + H2SiO3

Химические свойства

1. Кремниевая кислота — нерастворимая. Кислотные свойства выражены очень слабо, поэтому кислота реагирует только с сильными основаниями и их оксидами:

Например, кремниевая кислота реагирует с концентрированным гидркосидом калия:

H2SiO3 +4KOH → K2SiO3 + 4H2O

2. При нагревании кремниевая кислота разлагается на оксид и воду:

H2SiO3  →  SiO2 + H2O

Силикаты

Силикаты — это соли кремниевой кислоты.  Большинство силикатов нерастворимо в воде, кроме силикатов натрия и калия, их называют «жидким стеклом».

Способы получения силикатов:

1. Растворение кремния, кремниевой кислоты или оксида в щелочи:

H2SiO3 + 2KOH → K2SiO3 + 2H2O

Si + 2NaOH + H2O → Na2SiO3 + H2

SiO2 + 2KOH → K2SiO3 + H2O

2. Сплавление с основными оксидами:

СаО   +   SiO2   →   CaSiO3

3.  Взаимодействие растворимых силикатов с солями:

K2SiO3 + CaCl2    →    CaSiO3 + 2KCl

Оконное стекло (натриевое стекло) — силикат натрия и кальция: Na2O·CaO·6SiO2.

Стекло получают при сплавлении в специальных печах смеси соды Na2CO3, известняка CaCO3 и белого песка SiO2:

6SiO2 + Na2CO3 + CaCO3 → Na2O·CaO·6SiO2 + 2CO2

Для получения специального стекла вводят различные добавки, так стекло содержащее ионы Pb2+ – хрусталь; Cr3+ – имеет зеленую окраску, Fe3+ – коричневое бутылочное стекло, Co2+ – дает синий цвет, Mn2+ – красновато-лиловый.

Поделиться ссылкой:

chemege.ru

Кремний. Видеоурок. Химия 11 Класс

Тема: Основные металлы и неметаллы

Урок: Кремний. Благородные газы

Кремний – один из самых распространённых химических элементов земной коры. Его содержание составляет почти 30%. В природе он в основном встречается в виде различных форм диоксида кремния, силикатов и алюмосиликатов.

Почти во всех своих соединениях кремний четырехвалентен. При этом атомы кремния находятся в возбужденном состоянии. Рис. 1.                                                                                    

Рис. 1

Для перехода в такое состояние один из 3s-электронов занимает вакантное место на 3р-орбитали. При этом вместо 2-х неспаренных электронов в основном состоянии, у атома кремния в возбуждённом состоянии будет 4 неспаренных электрона. Он сможет образовывать 4 ковалентные связи по обменному механизму.

Рис. 2

Рис. 3

Атомы кремния не склонны к образованию кратных связей, но образуют соединения с одинарными связями -Si-O-. Кремнию, в отличие от углерода, несвойственна аллотропия.

Одной из аллотропных модификаций является кристаллический кремний, в котором каждый атом кремния находится в sp3-гибридизации. Рис. 2, 3. Кристаллический кремний – это твердое, тугоплавкое и прочное кристаллическое вещество темно-серого цвета с металлическим блеском. При обычных условиях – полупроводник. Иногда в качестве еще одной аллотропной модификации кремния выделяют аморфный кремний. Это темно-коричневый порошок, химически более активный, чем кристаллический кремний. Является ли он аллотропной модификацией – вопрос спорный.

Химические свойства кремния

1. Взаимодействие с галогенами

Si + 2F2 → SiF4

2. При нагревании кремний сгорает в кислороде, образуется оксид кремния (IV).

Si + О2 → SiО2

3. При высоких температурах кремний взаимодействует с азотом или углеродом.

3Si + 2N2 → Si3N4

Si + C → SiC

4. С водными растворами кислот кремний не реагирует. Но растворяется в щелочах.

Si + 2NaOH + H2O → Na2SiO3+ 2H2

5. При сплавлении кремния с металлами, образуются силициды.

Si + 2Mg → Mg2Si

6. Кремний непосредственно с водородом не взаимодействует, но водородные соединения кремния можно получить при взаимодействии силицидов с водой.

Mg2Si + 4H2O → 2Mg(OH)2 + SiH4↑ (силан)

Силаны по строению подобны алканам, но значительно реакционно способны. Самый стабильный моносилан воспламеняется на воздухе.

SiH4↑ +2 О2 → SiО2 + 2H2О

Получение кремния

Кремний получают восстановлением из оксида кремния (IV)

SiО2 + 2Mg → Si + 2MgO

Одна из задач – это получение высокочистого кремния. Для этого технический кремний переводят в тетрахлорид кремния. Получившийся тетрахлорид восстанавливают до силана, а силан разлагается при нагревании на кремний и водород.

Кремний способен образовывать два оксида: SiО2 – оксид кремния (IV) и SiО – оксид кремния (II).

Рис. 4

SiО – оксид кремния (II) – это аморфное темно-коричневое вещество, которое образуется при взаимодействии кремния с оксидом кремния (IV)

Si + SiO2 → 2SiO.

Несмотря на стабильность, это вещество почти не используется.

SiО2 — оксид кремния (IV)

Рис. 5

Рис. 6

На долю этого вещества приходится 12% земной коры. Рис. 4. Он представлен такими минералами, как горный хрусталь, кварц, аметист, цитрин, яшма, халцедон. Рис. 5.

SiО2 – оксид кремния (IV) – вещество немолекулярного строения.

Его кристаллическая решетка – атомная. Рис. 6. Кристаллы SiО2 имеют форму тетраэдра, которые связаны между собой атомами кислорода. Более правильной была бы формула молекулы (SiО2)n. Так как SiО2 образует вещество атомного строения, а СО2 – молекулярного строения, то очевидна разница в их свойствах. СО2  – это газ, а SiО2 – твердое прозрачное кристаллическое вещество, нерастворимое в воде и тугоплавкое.

Химические свойства SiО2

1. Оксид кремния (IV) SiО2 – это кислотный оксид. Он не реагирует с водой. Кремниевую кислоту нельзя получить гидратацией SiО2. Её соли – силикаты – можно получить при взаимодействии SiО2  с горячими растворами щелочей.

SiО2 + 2NaOH  Na2SiO3 + H2O

2. Реагирует с карбонатами щелочных и щелочноземельных металлов.

CaCO3 + SiО2  CaSiO3 + CO2

3. Взаимодействует с металлами.

SiО2 + 2Mg → Si + 2MgO

4. Реакция с плавиковой кислотой.

SiО2 + 4HF → SiF4 + 2H2O

SiF4 + 2HF →H2[SiF6]

Химические свойства кремниевой кислоты и силикатов

Получение кремниевой кислоты

Na2SiO3 + 2HCl → H2SiO3↓ + 2NaCl

Кремниевая кислота осаждается в виде полимерного соединения. Формулы для кремниевой кислоты –

H2SiO3 (мета форма) и H4SiO4 (орто форма) – отражают соотношение элементов, но не истинный состав. Условно на плоскости состав кремниевой кислоты изображается как Рис. 7.

Рис. 7

Для кремниевой кислоты всегда используется формула H2SiO3.

1. H2SiO3 при нагревании разлагается

H2SiO3 H2O + SiO2 (силикагель)

2. Взаимодействует с растворами щелочей

H2SiО3 + 2NaOH  Na2SiO3 + 2H2O

Соли кремниевой кислоты – силикаты – относятся к ионным соединениям. Это твердые бесцветные вещества. В воде растворимы только силикаты щелочных металлов, кроме лития.

1. Растворимые силикаты подвергаются гидролизу по аниону

Na2SiО3 + H2O ⇆ NaHSiО3 + NaОH

2. Растворимые силикаты взаимодействуют с сильными кислотами

Na2SiO3 + 2HCl → H2SiO3↓ + 2NaCl

Рис. 8

Полиорганосилоксаны (силиконы)

Полиорганосилоксаны (силиконы) – это кислородсодержащие высокомолекулярные кремнийорганические соединения.

R2[SiO]n

R – органическая группа (метильная, этильная или фенильная). В основе строения силоксанов лежит цепочка из чередующихся атомов кремния и кислорода. Рис.8. Варьируя длину цепочки и органические группы, можно получить силиконы с различными свойствами. Изменяя условия полимеризации, можно получать молекулы разной длины.

Рис. 9

Рис. 10

Полимеры с короткой цепочкой – это жидкости, более длинные – ценные смазочные материалы. Рис. 9, которые сохраняют свои свойства в огромном интервале температур от

 – 1000С до + 3000С. Более длинные молекулы образуют каучуки, которые не теряют своей эластичности при низких температурах. Обладают высокой стойкостью к истиранию, химически инертны. Рис. 10. Это обуславливает различные варианты их применения. Они могут использоваться для создания аппаратов искусственного сердца или почки, а могут применяться как подошвы для ботинок. Силоксановые полимеры используются в медицине для создания различных имплантов мягких тканей, поскольку такие полимеры химически инертны и не отторгаются организмом. Они не смачиваются водой. Это используется в кремах. При нанесении такого крема на руки, он заменят собой резиновые перчатки.

Неорганический сад

В прозрачный стакан, заполненный силикатом натрия, опускаем кристаллы окрашенных солей, например, медного купороса. Через некоторое время можно увидеть, что из кристаллов образовались тонкие полые трубки, которые состоят из нерастворимых силикатов. Рис. 11.

Рис. 11

Получение «дурацкой» замазки

Смешиваются равные объёмы силиката натрия и медицинского спирта. Выпавший осадок отфильтровывается и отжимается, чтобы не капал спирт. Это и есть замазка. Рис. 12. Она названа так, потому что планировалось использовать ее как замазку для окон. Но оказалось, что она обладает такими свойствами, что использовать ее по назначению не получилось. Если скатать шарик и бросить на пол, то он отскочит, как каучуковый мячик. Если положить на стол, то растечется, как жидкость. Если ударить твердым предметом, то разлетится, как твёрдое тело. Через некоторое время, когда высохнет спирт, эта замазка просто рассыплется.

Рис. 12

Подведение итога урока

 На этом уроке вы изучили тему «Кремний». Рассмотрели сведения о кремнии: его электронное строение, где в природе находится кремний, изучили аллотропию кремния, объяснили его физические и химические свойства. Узнали о том, где в промышленности и других сферах применяется кремний, как его получают. Вы познакомились с диоксидами кремния, кремниевой кислотой и ее солями – силикатами.

 

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – 14-е изд. – М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. – К.: ИЦ «Академия», 2008. – 240 с.: ил.

3. Габриелян О.С. Химия. 11 класс. Базовый уровень.  2-е изд., стер. – М.: Дрофа, 2007. – 220 с.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Internerurok.ru (

interneturok.ru

Кремний / Habr


Процессор? Песок? А какие у вас с этим словом ассоциации? А может Кремниевая долина?
Как бы там ни было, с кремнием мы сталкиваемся каждый день и если вам интересно узнать что такое Si и с чем его едят, прошу под кат.

Введение

Будучи студентом одного из московских вузов с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. Итак, приступим.
Silicium

Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
Плотность (при н.у.) 2,33 г/см³
Температура плавления 1688 K

Порошковый Si
Историческая справка

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, — изготовление стекла — началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния — оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввел Г. И. Гесс в 1834.


Кремний очень распространен в природе в составе обыкновенного песка

Распространение Кремния в природе

По распространенности в земной коре Кремний — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.
Физические свойства Кремния

Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.
Температура кипения 2600 °С
Кремний прозрачен для длинноволновых ИК-лучей
Диэлектрическая проницаемость 11,7
Твердость Кремния по Моосу 7,0
Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
Кремний — полупроводник, именно поэтому он находит большое применение. Электрические свойства кремния очень сильно зависят от примесей.
Химические свойства Кремния

Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.
Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
Кремний образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).
Получение Кремния

Я думаю это самая интересная часть, тут остановимся поподробнее.
В зависимости от предназначения различают:
1. Кремний электронного качества (т. н. «электронный кремний») — наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом•см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.
2. Кремний солнечного качества (т. н. «солнечный кремний») — кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).

3. Технический кремний — блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь — углерод, отличается высоким содержанием легирующих элементов — бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.

Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
Поликристаллический кремний («поликремний») — наиболее чистая форма промышленно производимого кремния — полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.
Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и Sih5) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния — метод Чохральского).

Тут можно увидеть процесс выращивания кремния, методом Чохральского.

Метод Чохральского — метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

Применение Кремния

Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.
Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
Кремний является составной частью большого числа сплавов железа и цветных металлов.
Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие кремний.
Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и другими отраслями промышленности.
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.


Сверхчистый кремний и продукт его производства

Кремний в организме

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях — известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание — силикоз.
Заключение

Ну вот и все, если вы дочитали до конца и немного вникли, то вы на шаг ближе к успеху. Надеюсь писал я не зря и пост понравился хоть кому-то. Спасибо за внимание.

habr.com

кремний — это… Что такое кремний?

КРЕ́МНИЙ -я; м. [от греч. krēmnos — утёс, скала] Химический элемент (Si), тёмно-серые с металлическим блеском кристаллы которого входят в состав большинства горных пород.

Кре́мниевый, -ая, -ое. К-ые соли. Кре́мни́стый (см. 2.К.; 1 зн.).

КРЕ́МНИЙ (лат. Silicium от silex — кремень), Si (читается «силициум», но в настоящее время довольно часто и как «си»), химический элемент с атомным номером 14, атомная масса 28,0855. Русское название происходит от греческого kremnos — утес, гора.
Природный кремний состоит из смеси трех стабильных нуклидов (см. НУКЛИД) с массовыми числами 28 (преобладает в смеси, его в ней 92,27% по массе), 29 (4,68%) и 30 (3,05%). Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кремния 3s2р2. В соединениях обычно проявляет степень окисления +4 (валентность IV) и очень редко +3, +2 и +1 (валентности соответственно III, II и I). В периодической системе Менделеева кремний расположен в группе IVA (в группе углерода), в третьем периоде.
Радиус нейтрального атома кремния 0,133 нм. Энергии последовательной ионизации атома кремния 8,1517, 16,342, 33,46 и 45,13 эВ, сродство к электрону 1,22 эВ. Радиус иона Si4+ при координационном числе 4 (наиболее распространенном в случае кремния) 0,040 нм, при координационном числе 6 — 0,054 нм. По шкале Полинга электроотрицательность кремния 1,9. Хотя кремний принято относить к неметаллам, он по ряду свойств занимает промежуточное положение между металлами и неметаллами.
В свободном виде — коричневый порошок или светло-серый компактный материал с металлическим блеском.
История открытия
Соединения кремния были известны человеку с незапамятных времен. Но с простым веществом кремнием человек познакомился всего около 200 лет тому назад. Фактически первыми исследователями, получившими кремний, были французы Ж. Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи)и Л. Ж. Тенар (см. ТЕНАР Луи Жак) . Они в 1811 обнаружили, что нагревание фторида кремния с металлическим калием приводит к образованию буро-коричневого вещества:
SiF4+ 4K = Si + 4KF, однако сами исследователи правильного вывода о получении нового простого вещества не сделали. Честь открытия нового элемента принадлежит шведскому химику Й. Берцелиусу (см. БЕРЦЕЛИУС Йенс Якоб), который для получения кремния нагревал также с металлическим калием соединение состава K2SiF6. Он получил тот же аморфный порошок, что и французские химики, и в 1824 объявил о новом элементарном веществе, которое назвал «силиций». Кристаллический кремний был получен только в 1854 году французским химиком А. Э. Сент-Клер Девилем (см. СЕНТ-КЛЕР ДЕВИЛЬ Анри Этьен) .
Нахождение в природе
По распространенности в земной коре кремний среди всех элементов занимает второе место (после кислорода). На долю кремния приходится 27,7% массы земной коры. Кремний входит в состав нескольких сотен различных природных силикатов (см. СИЛИКАТЫ)и алюмосиликатов (см. АЛЮМОСИЛИКАТЫ). Широко распространен и кремнезем, или кремния диоксид (см. КРЕМНИЯ ДИОКСИД) SiO2 (речной песок (см. ПЕСОК) , кварц (см. КВАРЦ) , кремень (см. КРЕМЕНЬ) и др.), составляющий около 12% земной коры (по массе). В свободном виде кремний в природе не встречается.
Получение
В промышленности кремний получают, восстанавливая расплав SiO2 коксом при температуре около 1800°C в дуговых печах. Чистота полученного таким образом кремния составляет около 99,9%. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000°C. Содержание примесей в получаемом этими методами кремнии снижается до 10-8-10-6% по массе.
Физические и химические свойства
Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза.
Плотность кремния 2,33 кг/дм3. Температура плавления 1410°C, температура кипения 2355°C. Кремний хрупок, только при нагревании выше 800°C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному (ИК)-излучению.
Элементарный кремний — типичный полупроводник (см. ПОЛУПРОВОДНИКИ) . Ширина запрещенной зоны при комнатной температуре 1,09 эВ. Концентрация носителей тока в кремнии с собственной проводимостью при комнатной температуре 1,5·1016 м-3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора (см. БОР (химический элемент)), алюминия (см. АЛЮМИНИЙ), галлия (см. ГАЛЛИЙ) и индия (см. ИНДИЙ), с электронной проводимостью — добавки элементов V-й группы — фосфора (см. ФОСФОР), мышьяка (см. МЫШЬЯК) или сурьмы (см. СУРЬМА). Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.
Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500°C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.
С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны (см. СИЛАНЫ) с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:
Ca2Si + 4HCl = 2CaCl2 + SiH4
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).
С азотом кремний при температуре около 1000°C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiС (карборунд (см. КАРБОРУНД) ) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.
При нагревании кремния с металлами возникают силициды (см. СИЛИЦИДЫ) . Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000°C). Наиболее часто образуются металлоподобные силициды составов MSi, M3Si2, M2Si3, M5Si3 и MSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
Диоксид кремния SiO2— кислотный оксид, не реагирующий с водой. Существует в виде нескольких полиморфных модификаций (кварц (см. КВАРЦ), тридимит, кристобалит, cтеклообразный SiO2). Из этих модификаций наибольшее практическое значение имеет кварц. Кварц обладает свойствами пьезоэлектрика (см. ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ) , он прозрачен для ультрафиолетового (УФ) излучения. Характеризуется очень низким коэффициентом теплового расширения, поэтому изготовленная из кварца посуда не растрескивается при перепадах температуры до 1000 градусов.
Кварц химически стоек к действию кислот, но реагирует с плавиковой кислотой:
SiO2 + 6HF =H2[SiF6] + 2H2O
и газообразным фтороводородом HF:
SiO2 + 4HF =SiF4 + 2H2O
Эти две реакции широко используют для травления стекла.
При сплавлении SiO2 с щелочами и основными оксидами, а также с карбонатами активных металлов образуются силикаты (см. СИЛИКАТЫ) — соли не имеющих постоянного состава очень слабых нерастворимых в воде кремниевых кислот (см. КРЕМНИЕВЫЕ КИСЛОТЫ) общей формулы xH2O·ySiO2 (довольно часто в литературе не очень точно пишут не о кремниевых кислотах, а о кремниевой кислоте, хотя фактически речь при этом идет об одном и том же). Например, может быть получен ортосиликат натрия:
SiO2 + 4NaOH = (2Na2O)·SiO2 +2H2O,
метасиликат кальция:
SiO2 + СаО = СаО·SiO2
или смешанный силикат кальция и натрия:
Na2CO3 + CaCO3 + 6SiO2 = Na2O·CaO·6SiO2 + 2CO2

Из силиката Na2O·CaO·6SiO2 изготовляют оконное стекло.
Следует отметить, что большинство силикатов не имеет постоянного состава. Из всех силикатов растворимы в воде только силикаты натрия и калия. Растворы этих силикатов в воде называют растворимым стеклом. Из-за гидролиза эти растворы характеризуются сильно щелочной средой. Для гидролизованных силикатов характерно образование не истинных, а коллоидных растворов. При подкислении растворов силикатов натрия или калия выпадает студенистый белый осадок гидратированных кремниевых кислот.
Главным структурным элементом как твердого диоксида кремния, так и всех силикатов выступает группа [SiO4/2], в которой атом кремния Si окружен тетраэдром из четырех атомов кислорода О. При этом каждый атом кислорода соединен с двумя атомами кремния. Фрагменты [SiO4/2] могут быть связаны между собой по-разному. Среди силикатов по характеру связи в них фрагментов [SiO4/2] выделяют островные, цепочечные, ленточные, слоистые, каркасные и другие.
При восстановлении SiO2 кремнием при высоких температурах образуется монооксид кремния состава SiO.
Для кремния характерно образование кремнийорганических соединений (см. КРЕМНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ) , в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.
Применение
Кремний используют как полупроводниковый материал. Кварц находит применение как пьезоэлектрик, как материал для изготовления жаропрочной химической (кварцевой) посуды, ламп УФ-излучения. Силикаты находят широкое применение как строительные материалы. Оконные стекла представляют собой аморфные силикаты. Кремнийорганические материалы характеризуются высокой износостойкостью и широко используются на практике в качестве силиконовых масел, клеев, каучуков, лаков.
Биологическая роль
Для некоторых организмов кремний является важным биогенным элементом (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ). Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли (см. ДИАТОМОВЫЕ ВОДОРОСЛИ), радиолярии (см. РАДИОЛЯРИИ), губки (см. ГУБКИ) . Мышечная ткань человека содержит (1—2)·10-2% кремния, костная ткань — 17·10-4%, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.
Соединения кремния не ядовиты. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в легкие, в них кристаллизуются, а возникающие кристаллики разрушают легочную ткань и вызывают тяжелую болезнь — силикоз (см. СИЛИКОЗ). Чтобы не допустить попадания в легкие этой опасной пыли, следует использовать для защиты органов дыхания респиратор.

dic.academic.ru

Кремний — Мегаэнциклопедия Кирилла и Мефодия — статья

Природный кремний состоит из смеси трех стабильных нуклидов с массовыми числами 28 (преобладает в смеси, его в ней 92, 27% по массе), 29 (4, 68%) и 30 (3, 05%). Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кремния 3s2р2. В соединениях обычно проявляет степень окисления +4 (валентность IV) и очень редко +3, +2 и +1 (валентности соответственно III, II и I). В периодической системе Менделеева кремний расположен в группе IVA (в группе углерода), в третьем периоде.

Радиус нейтрального атома кремния 0, 133 нм. Энергии последовательной ионизации атома кремния 8, 1517, 16, 342, 33, 46 и 45, 13 эВ, сродство к электрону 1, 22 эВ. Радиус иона Si4+ при координационном числе 4 (наиболее распространенном в случае кремния) 0, 040 нм, при координационном числе 6 — 0, 054 нм. По шкале Полинга электроотрицательность кремния 1, 9. Хотя кремний принято относить к неметаллам, он по ряду свойств занимает промежуточное положение между металлами и неметаллами.

В свободном виде — коричневый порошок или светло-серый компактный материал с металлическим блеском.

Соединения кремния были известны человеку с незапамятных времен. Но с простым веществом кремнием человек познакомился всего около 200 лет тому назад. Фактически первыми исследователями, получившими кремний, были французы Ж. Л. Гей-Люссак и Л. Ж. Тенар . Они в 1811 обнаружили, что нагревание фторида кремния с металлическим калием приводит к образованию буро-коричневого вещества:SiF4+ 4K = Si + 4KF, однако сами исследователи правильного вывода о получении нового простого вещества не сделали. Честь открытия нового элемента принадлежит шведскому химику Й. Берцелиусу, который для получения кремния нагревал также с металлическим калием соединение состава K2SiF6. Он получил тот же аморфный порошок, что и французские химики, и в 1824 объявил о новом элементарном веществе, которое назвал «силиций». Кристаллический кремний был получен только в 1854 году французским химиком А. Э. Сент-Клер Девилем .По распространенности в земной коре кремний среди всех элементов занимает второе место (после кислорода). На долю кремния приходится 27, 7% массы земной коры. Кремний входит в состав нескольких сотен различных природных силикатов и алюмосиликатов. Широко распространен и кремнезем, или кремния диоксид SiO2 (речной песок, кварц, кремень и др.), составляющий около 12% земной коры (по массе). В свободном виде кремний в природе не встречается.

В промышленности кремний получают, восстанавливая расплав SiO2 коксом при температуре около 1800°C в дуговых печах. Чистота полученного таким образом кремния составляет около 99, 9%. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000°C. Содержание примесей в получаемом этими методами кремнии снижается до 10-8-10-6% по массе.

Физические и химические свойства

Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0, 54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза.

Плотность кремния 2, 33 кг/дм3. Температура плавления 1410°C, температура кипения 2355°C. Кремний хрупок, только при нагревании выше 800°C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному (ИК)-излучению.

Элементарный кремний — типичный полупроводник . Ширина запрещенной зоны при комнатной температуре 1, 09 эВ. Концентрация носителей тока в кремнии с собственной проводимостью при комнатной температуре 1, 5·1016 м-3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400-500°C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.

С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:

Ca2Si + 4HCl = 2CaCl2 + SiH4

Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).

С азотом кремний при температуре около 1000°C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiС (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.При нагревании кремния с металлами возникают силициды . Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000°C). Наиболее часто образуются металлоподобные силициды составов MSi, M3Si2, M2Si3, M5Si3 и MSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.Диоксид кремния SiO2— кислотный оксид, не реагирующий с водой. Существует в виде нескольких полиморфных модификаций (кварц, тридимит, кристобалит, cтеклообразный SiO2). Из этих модификаций наибольшее практическое значение имеет кварц. Кварц обладает свойствами пьезоэлектрика, он прозрачен для ультрафиолетового (УФ) излучения. Характеризуется очень низким коэффициентом теплового расширения, поэтому изготовленная из кварца посуда не растрескивается при перепадах температуры до 1000 градусов.

Кварц химически стоек к действию кислот, но реагирует с плавиковой кислотой:

SiO2 + 6HF =H2[SiF6] + 2H2O
и газообразным фтороводородом HF:

SiO2 + 4HF =SiF4 + 2H2O

Эти две реакции широко используют для травления стекла.

При сплавлении SiO2 с щелочами и основными оксидами, а также с карбонатами активных металлов образуются силикаты — соли не имеющих постоянного состава очень слабых нерастворимых в воде кремниевых кислот общей формулы xH2O·ySiO2 (довольно часто в литературе не очень точно пишут не о кремниевых кислотах, а о кремниевой кислоте, хотя фактически речь при этом идет об одном и том же). Например, может быть получен ортосиликат натрия:

SiO2 + 4NaOH = (2Na2O)·SiO2 +2H2O,
метасиликат кальция:

SiO2 + СаО = СаО·SiO2
или смешанный силикат кальция и натрия:

Na2CO3 + CaCO3 + 6SiO2 = Na2O·CaO·6SiO2 + 2CO2

Из силиката Na2O·CaO·6SiO2 изготовляют оконное стекло.

Следует отметить, что большинство силикатов не имеет постоянного состава. Из всех силикатов растворимы в воде только силикаты натрия и калия. Растворы этих силикатов в воде называют растворимым стеклом. Из-за гидролиза эти растворы характеризуются сильно щелочной средой. Для гидролизованных силикатов характерно образование не истинных, а коллоидных растворов. При подкислении растворов силикатов натрия или калия выпадает студенистый белый осадок гидратированных кремниевых кислот.

Главным структурным элементом как твердого диоксида кремния, так и всех силикатов выступает группа [SiO4/2], в которой атом кремния Si окружен тетраэдром из четырех атомов кислорода О. При этом каждый атом кислорода соединен с двумя атомами кремния. Фрагменты [SiO4/2] могут быть связаны между собой по-разному. Среди силикатов по характеру связи в них фрагментов [SiO4/2] выделяют островные, цепочечные, ленточные, слоистые, каркасные и другие.

При восстановлении SiO2 кремнием при высоких температурах образуется монооксид кремния состава SiO.

Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.

Кремний используют как полупроводниковый материал. Кварц находит применение как пьезоэлектрик, как материал для изготовления жаропрочной химической (кварцевой) посуды, ламп УФ-излучения. Силикаты находят широкое применение как строительные материалы. Оконные стекла представляют собой аморфные силикаты. Кремнийорганические материалы характеризуются высокой износостойкостью и широко используются на практике в качестве силиконовых масел, клеев, каучуков, лаков.

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки . Мышечная ткань человека содержит (1-2)·10-2% кремния, костная ткань — 17·10-4%, кровь — 3, 9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.Соединения кремния не ядовиты. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в легкие, в них кристаллизуются, а возникающие кристаллики разрушают легочную ткань и вызывают тяжелую болезнь — силикоз. Чтобы не допустить попадания в легкие этой опасной пыли, следует использовать для защиты органов дыхания респиратор.
  • Андрианов К. А. Методы элементоорганической химии. Кремний. М., 1968.
  • Нашельский А. Я. Технология полупроводниковых материалов. М. 1987.
  • Воронков М. Г. и др. Кремний и жизнь. Рига, 1978.
  • Зелчан Г. И., Лукевич Э. Я. Кремний и жизнь. М. 1978.
  • Айлер Р. Химия кремнезема: Пер. с англ. 1982.
  • Самсонов Г. В. и др. Силициды. М., 1979.
  • Айлер Р. Химия кремнезема. М., 1982.

megabook.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *