Начальный модуль упругости бетона – Расчетные сопротивления и модули упругости для различных строительных материалов

что это такое и как определяется

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;
Модуль упругости бетона разных классов
  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от  упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога.  Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Модуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.
Различные технологии изготовления бетона

Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Заключение

Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.

pobetony.expert

Модуль упругости бетона

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении (согласно СП 63.13330):

БетонЗначение модуля упругости бетона при сжатии, Eb, МПа
B1019000 МПа
В12,521500 МПа
В1524000 МПа
В2027500 МПа
В2530000 МПа
В3032500 МПа
В3534500 МПа

При продолжительном действии нагрузки модуль упругости бетона определяется по формуле:

-коэффициент ползучести бетона, принимаемый по таблице ниже

Относительная влажность воздуха окружающей среды, %В10В15В20В25В30В35
Выше 752,82,42,01,81,61,5
40-753,93,42,82,52,32,1
Ниже 405,64,84,03,63,23,0

Примечание: Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

Коэффициент поперечной деформации бетона допускается принимать 0,2.

Узнать расчетное сопротивление бетона сжатию

buildingclub.ru

elima.ru › Таблица начальных модулей упругости бетона

БетонНачальные модули упругости бетона при сжатии и растяжении Eb·103 [МПа] при классе бетона по прочности на сжатие
В1В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Тяжёлый:
естественного твердения9,51316182123273032,534,53637,53939,540
подвергнутый тепловой обработке при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
подвергнутый автоклавной обработке7101213,516172022,524,52627282929,530
Мелкозернистый групп:
А — естественного твердения71013,515,517,519,522242627,528,5
подвергнутый тепловой обработке, при атмосферном давлении6,5912,51415,5172021,5232424,5
Б — естественного твердения6,5912,51415,5172021,523
подвергнутый тепловой обработке при атмосферном давлении5,5811,51314,515,517,51920,5
В — автоклавного твердения16,51819,521222323,52424,525
Лёгкий и поризованный марки по средней плотности D:
80044,555,5
100055,56,37,288,4
120066,77,68,79,51010,5
140077,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистый автоклавного твердения марки по средней плотности D:
5001,11,4
6001,41,71,82,1
7001,92,22,52,9
8002,93,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3

elima.ru

Модуль упругости бетона

СП 63.13330.2012

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Таблица 6.11

БетонЗначения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5в10В12,5B15B20B25в30В35В40В45В50В55В60В70В80В90В100
Тяжелый9,513,016,019,021,524,027,530,032,534,536,037,038,039,039,541,042,042,543
Мелкозернистый групп:
А — естественного твердения7,01013,515,517,519,522,024,026,027,528,5
Б — автоклавного твердения16,518,019,521,022,023,023,524,024,525,0
Легкий и порисованный марки по средней плотности:
D8004,04,55,05,5
D10005,05,56,37,28,08,4
D12006,06,77,68,79,510,010,5
D14007,07,88,810,011,011,712,513,514,515,5
D16009,010,011,512,513,214,015,516,517,518,0
D180011,213,014,014,715,517,018,519,520,521,0
D200014,516,017,018,019,521,022,023,023,5
Ячеистый автоклавного твердения марки по средней плотности:
D5001,4
D6001,71,82,1
D7001,92,22,52,9
D8002,93,44,0
D9003,84,55,5
D10005,06,07,0
D11006,87,98,38,6
D12008,48,89,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.

Таблица 6.12

Относительная влажность воздуха окружающей среды, %Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие
В10В15В20В25взоВ35В40В45В50В55В60 — В100
Выше 752,82,42,01,81,61,51,41,31,21,11,0
40 — 753,93,42,82,52,32,11,91,81,61,51,4
Ниже 405,64,84,03,63,23,02,82,62,42,22,0
Примечание — Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

 

saitinpro.ru

Модуль (коэффициент) упругости бетона: формула для расчета

 

Определение упругости и единицы измерения

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения. Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10-3) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками

Классы по прочности на сжатие

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Характеристики бетона

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тяжелые бетоны

Естественное твердение

9,5

13

16

18

21

23

27

30

32,5

34,5

36

37,5

39

39,5

40

Тепловая обработка при атмосферном давлении

8,5

11,5

14,5

16

19

20,5

24

27

29

31

32,5

34

35

35,5

36

Автоклавная обработка

7

10

12

13,5

16

17

20

22,5

24,5

26

27

28

29

29,5

30

Мелкозернистые

Естественное твердение, А-группа

7

10

13,5

15,5

17,5

19,5

22

24

26

27,5

28,5

Тепловая обработка при атмосферном давлении

6,5

9

12,5

14

15,5

17

20

21,5

23

Естественное твердение, Б-группа

6,5

9

12,5

14

15,5

17

20

21,5

23

Автоклавная теплообработка

5,5

8

11,5

13

14,5

15,5

17,5

19

20,5

Автоклавное твердение, В-группа

16,5

18

19,5

21

21

22

23

24

24,5

25

Легкие и поризованные

Марка средней плотности, D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

800

4,5

5,0

5,5

1000

5,5

6,3

7,2

8

8,4

1200

6,7

7,6

8,7

9,5

10

10,5

1400

7,8

8,8

10

11

11,7

12,5

13,5

14,5

15,5

1600

9

10

11,5

12,5

13,2

14

15,5

16,5

17,5

18

1800

11,2

13

14

14,7

15,5

17

18,5

19,5

20,5

21

2000

14,5

16

17

18

19,5

21

22

23

23,5

Ячеистые автоклавного твердения

Марка средней плотности, D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

700

2,9

800

3,4

4

900

3,8

4,5

5,5

1000

6

7

1100

6,8

7,9

8,3

8,6

1200

 

8,4

8,8

9,3

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца. Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

udarnik.spb.ru

Начальный модуль упругости бетона


Модуль упругости бетона: что это такое и как определить?

Очень многих людей интересует, как влияют на бетонные конструкции различные силовые воздействия и нагрузки. Бетон представляет собой твердое тело, имеющее склонность поддаваться деформации при воздействии на него внешних сил. Именно способность к упругой деформации (временного характера) отражает модуль упругости бетона.

Величину упругости определяют при проведении испытаний различных образцов на устойчивость к растяжению или сжатию. Однако следует знать, что бетон, который не содержит арматуры, к растяжению нестойкий. На основании результатов испытаний строится график зависимости возникающих деформаций от приложенных к материалу усилий. Наглядность способствует лучшему пониманию. Также необходимо знать начальный модуль упругости бетона и величину деформации.

Под нагрузкой увеличение деформации обусловлено тем, что бетон обладает таким свойством, как ползучесть. Сначала при определённом давлении в нем происходит упругая деформация. Она представляет собой явление, при котором тело, которое деформировалось от нагрузки, возвращается к своей изначальной форме после её исчезновения. Затем при дальнейшей нагрузке в материале начинают происходить необратимые (пластичные) деформации. Однако разделить пластичные и упругие изменения крайне затруднительно. Потому что мгновенное изменение формы зависит от скорости повышения нагрузки. Из-за этого деформацию за время увеличения нагрузки называют упругой, а дальнейшее увеличение изменения формы – пластичной. Она происходит из-за ползучести бетона. Дальнейшая деформация является уже разрушением объекта. Данный модуль упругости бетона часто ещё называют модулем деформации. Он определяется с помощью разных методик.

Модуль упругости бетона начальный определяется очень непросто. Однако его приблизительное значение можно установить косвенным путем. На многих графиках секущая линия к кривой, отражающей зависимость напряжения от деформации, очень часто, хотя и не всегда, бывает параллельной касательной, которая идет через начало координат.

Относительно верным будет утверждение, что модуль упругости бетона возрастает прямо пропорционально корню его прочности. Однако это является истинным только для основной части на графике (напряжение-деформация) и зависит от среды и условий испытаний. Как пример, водонасыщенные типы материала на испытаниях имеют больший показатель модуля упругости, чем сухие образцы. Хотя их свойства прочности аналогичны.

На модуль упругости сильно влияют качества крупного наполнителя. Эта зависимость является прямолинейной. Естественно, что показатель легких бетонов будет ниже, чем тяжелых образцов. Упругость также увеличивается с ростом возраста материалов. Например, модуль упругости бетона в25, через один год будет выше, чем изначально, а через 10 лет он ещё больше возрастет. Для определения показателей упругости существует специальная таблица, где ук

vest-beton.ru

Модуль упругости бетона: виды, классификация. От чего зависит. Модуль упругости железобетона


Модуль упругости бетона

СП 63.13330.2012

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле:

где φb,cr— коэффициент ползучести бетона, принимаемый согласно 6.1.16.

Таблица 6.11

БетонЗначения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5В2В2,5В3,5В5В7,5в10В12,5B15B20B25в30В35В40В45В50В55В60В70В80В90В100
Тяжелый9,513,016,019,021,524,027,530,032,534,536,037,038,039,039,541,042,042,543
Мелкозернистый групп:
А — естественного твердения7,01013,515,517,519,522,024,026,027,528,5
Б — автоклавного твердения16,518,019,521,022,023,023,524,024,525,0
Легкий и порисованный марки по средней плотности:
D8004,04,55,05,5
D10005,05,56,37,28,08,4
D12006,06,77,68,79,510,010,5
D14007,07,88,810,011,011,712,513,514,515,5
D16009,010,011,512,513,214,015,516,517,518,0
D180011,213,014,014

sevparitet.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *