Непучинистый грунт гост – ГОСТ 25100-2011 Грунты. Классификация (с Поправками), ГОСТ от 12 июля 2012 года №25100-2011

ГОСТ 28622-2012 Грунты. Метод лабораторного определения степени пучинистости

 

Грунты

МЕТОД ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ
СТЕПЕНИ ПУЧИНИСТОСТИ

 

Москва

Стандартинформ

2013

 

 

 

Предисловие

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, пра­вила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, приме­нения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений (НИИОСП) им. Н.М. Герсеванова ОАО «НИЦ «Строительство»

2 ВНЕСЕН Техническим комитетом ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (протокол от 18 декабря 2012 г. № 41)

За принятие стандарта проголосовали:

Краткое наименование страны
по MK (ИСО 3166) 004-97

Код страны
по MK (ИСО 3166) 004-97

Сокращенное наименование органа государственного
управления строительством

Азербайджан

AZ

Госстрой

Армения

AM

Министерство градостроительства

Киргизия

KG

Госстрой

Молдова

MD

Министерство строительства и регионального развития

Россия

RU

Департамент регулирования градостроительной деятельности Министерства регионального развития

Таджикистан

TJ

Агентство по строительству и архитектуре при Правительстве

Узбекистан

UZ

Госархитектстрой

Украина

UA

Министерство регионального развития, строительства и ЖКХ

4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. № 2016-ст межгосударственный стандарт ГОСТ 28622-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 ноября 2013 г.

5 ВЗАМЕН

files.stroyinf.ru

ГОСТ 25100-2011 — Стр 3

ГОСТ 25100—2011

Таблица Г.3

Наименование скального массива

Относительная скорость упругих продольных волн vp.М / vp.Б, д. е.

 

 

 

 

Монолитный

Более 0,6

Слаботрещиноватый

От 0,6 до 0,3

Среднетрещиноватый

От 0,3 до 0,1

Сильнотрещиноватый

От 0,1 до 0, 03

Разборный

Менее 0,03

 

 

Примечание — vp.М — скорость упругих продольных волн в массиве скального грунта; vp.Б — скорость продольных волн в блоке отдельности.

Г.2 По показателю качества грунта RQD скальные грунты подразделяют в соответствии с таблицей Г.4.

Таблица Г.4

Качество скального грунта

Показатель качества RQD, %

 

 

 

 

Очень хорошее

RQD > 90

 

 

Хорошее

90 ≥ RQD ≥ 75

 

 

Среднее

75 > RQD ≥ 50

 

 

Плохое

50 > RQD ≥ 25

 

 

Очень плохое

RQD < 25

 

 

Г.3 Блоки отдельности, из которых состоят массивы скальных грунтов, подразделяют на разновидности по размеру и форме в соответствии с Г.3.1 и Г.3.2.

Г.3.1 По размеру блоков отдельности в массивах скальных грунтов выделяют разновидности отдельностей в соответствии с таблицей Г.5.

Таблица Г.5

Разновидность отдельностей

Средний размер блока отдельности, см

 

 

 

 

Крупноглыбовая

Св. 80

 

 

Мелкоглыбовая

От 80 до 20 включ.

 

 

Щебневая

Менее 20

 

 

Г.3.2 По форме блоков отдельности в массивах скальных грунтов выделяют следующие разновидности отдельностей:

-параллелепипедальная («сундучная») — примерно изометрические блоки, ограниченные примерно ортогональными трещинами;

-остроугольная — блоки сложной формы, ограниченные трещинами, пересекающимися под острыми и тупыми углами;

-плитчатая — короткопризматические блоки, ограниченные системой частых и относительно длинных трещин, параллельных основанию призмы, и группой более редких трещин, секущих основание;

-столбчатая — призматические блоки, ограниченные несколькими длинными трещинами, параллельными оси призмы, и системой относительно коротких редких трещин, перпендикулярных к оси призмы;

-шаровая — блоки в виде усеченного шарового сектора («скорлуповатой» формы), ограниченные трещинами, оконтуривающими по шаровой или эллипсоидальной поверхности некоторый центр, и трещинами радиального направления (встречается редко).

Г.4 Трещины в массиве скальных грунтов, подразделяют на разновидности по пространственной ориентации, ширине раскрытия, длине, виду заполнителя и шероховатости стенок в соответствии с Г.4.1 — Г.4.5.

Г.4.1 По пространственной ориентации трещины в зависимости от угла падения β° подразделяют на разновидности всоответствии стаблицей Г.6. Приэтомнеобходимо указывать азимут падения плоскости трещины (слоя, разрыва) — азимут перпендикуляра к следу от пересечения плоскости трещины с горизонтальной плоскостью.

studfile.net

Лабораторные исследования морозного пучения грунтов

Испытания велись без нагрузки на образцы по открытой схеме, т.е. в процессе испытаний обеспечивался свободный приток воды к границе промерзания.

Перед заполнением грунтом, металлическая форма, размерами 100х150(h) обмазывалась фторопластовым лаком для исключения влияния сил трения и смерзания грунта со стенками.

Перемещения вследствие морозного пучения измерялись индикаторами часового типа с точностью 0.01 мм.

Результаты определения физико-механических характеристик испытываемых грунтов приведены в таблице 1.

Грунты(по ГОСТ 25100-95) Влажность, % Число пластичности, Ip Показатель текучести, IL Плотность грунта, г/см3 Пористость, % Коэффициент пористости
природная сухого частиц
Суглинок элювиальный(монолит) 0.30 9.3 0.64 1.82 1.7 2.71 37 0.59
Суглинок элювиальный(нарушенной структуры) 0.28 0.28 0.64 1.95 1.7 2.70 37 0.77
Глина делювиальная твердая 0.2 19.8 -0.30 1.78 1.47 2.60 43 0.77
Глина делювиальная полутвердая
0.27
18.1 0.149 1.87 1.48 2.50 40 0.69
Глина делювиальная мягкопластичная 0.31 21.1 0.67 1.9 1.5 2.74 45 0.82

Таблица 1 — Физико-механические характеристики испытываемых грунтов

Классификация и оценка пучинистых свойств грунтов выполнялась по величине — относительной деформации морозного пучения согласно ГОСТ 28622-90.

, где — фактическая толщина промерзшего образца, — вертикальная деформация образца грунта в конце испытания (с точностью до 0.01 мм).

Результаты обработки лабораторных исследований морозного пучения делювиальной глины от консистенции (величине ) приведены на рисунке 1.

Рисунок 1 — Кривые относительной деформации пучения: 1 – глины полутвердой, 2 – глины мягкопластичной, 3 – глины твердой консистенции.

Наибольшая величина пучения ( =0.73) наблюдалась у глины мягкопластичной консистенции. По степени пучинистости данный образец глины относится к сильнопучинистым грунтам.

Рисунок 2 — Экспериментальная зависимость деформаций морозного пучения от структуры грунта: а – монолитная, б – нарушенная структура.

На рисунке 2 отображены кривые пучения суглинка элювиального.

Исследовалось два образца, первый – монолит, второй – нарушенной структуры.

По кривым пучения образцов видно, что наибольшая величина пучения достигается в образце монолитной структуры =0.72, грунт сильнопучинистый, относительная деформация морозного пучения второго образца =0.52, грунт среднепучинистый.

По степени пучинистости данные образцы суглинка – сильнопучинистые.

Также в процессе лабораторных исследований определяли миграционное водонакопление для этих грунтов. Результаты изменения влажности образцов приведены в таблице 2.

Образцы грунта Суглинок (монолит) Суглинок(нарушен.) Глина твердая Глина полутвердая Глина мягкопластичная
Влажность до испытаний 0.28 0.30 0.20 0.27 0.31
Влажность после испытаний 0.34 0.35 0.23 0.44 0.38

Таблица 2 — Изменения влажности образцов 

Так, для мягкопластичной глины природная влажность до промораживания составила W =0,31 , после промерзания влажность составила W =0,38, т.е. его влажность увеличилась на 22,5 %, а для твердой глины влажность возросла на 15%.

В дальнейшем предполагается исследование зависимостей миграционного водонакопления и деформации пучения от давления на грунт.

Для образцов суглинка мороженной структуры были проведены компрессионные испытания при оттаивании в сравнении с испытаниями образцов суглинка в естественных условиях.

Результаты, полученные в ходе испытаний образцов суглинка приведены в таблице 3.

Характеристики Мороженая структура Естественная структура
Влажность 0.35 0.23
Коэффициент пористости е (до опыта) 0.790 0.831
Коэффициент пористости е (после компрессии) при р=0.3МПа 0.674 0.694
Компрессионный модуль деформации Е, МПа 5.2 2.8

Таблица 3 — Результаты компрессионных испытаний образцов суглинка

Графическая интерпретация полученных результатов испытания грунтов на сжатие приведена на рисунке 3.

Рисунок 3 — Графическая интерпретация результатов испытаний образцов суглинка элювиального на сжатие: 1 –  образец естественной структуры, 2 –  образец после промораживания, е –  коэффициент пористости,  относительная осадка образца

По графику изменения относительной осадки во времени видно, что при промораживании суглинка его осадка при оттаивании значительно превышает величину морозного пучения, а время оттаивания в несколько раз меньше, чем длительность морозного пучения. Это приводит к неравномерным деформациям системы «основание – здание» и повреждению сооружения.

Подобные исследования приведены в работах [8,10,11] и хорошо согласуются с нашими исследованиями в этой области.

glavfundament.ru

Пучинистость грунтов и фундамент

Глава из книги «Малозаглубленный ленточный фундамент»

Пучинистость грунтов, вызывания способностью грунта удерживать воду в своей структуре,  является серьезным врагом ленточных фундаментов. Особенно критична неравномерная пучинистость подлежащих грунтов, приводящая к неравномерным нагрузкам на фундамент.  Чаще всего неравномерная пучинистость грунтов может быть вызвана наличием разнородных подлежащих грунтов под малозаглубленным ленточным фундаментом. Также неравномерная пучинистость может быть вызвана неравномерным прогревом почвы от солнца, разницей в утеплении грунта (в том числе при неравномерном укрытии грунта рядом с домом снегом), наличием отапливаемых и неотапливаемых помещений на одном фундаменте. Кроме глинистых грунтов, к пучинистым грунтам относятся пылеватые и мелкие пески, а также крупнообломочные грунты с глинистым заполнителем, имеющие к началу сезона промерзания влажность выше определенного уровня.

Перечень пучинистых грунтов по ГОСТ 25100-95 приведен в таблице: 

Таблица. Пучинистость грунтов.

Степень пучинистости грунта   (ГОСТ 25100-95) / % расширения

Пример грунта требует исследований для принятия решения о классификации)

Практически непучинистые грунты < 1%

Твердые глинистые грунты, мало водонасыщенные гравелистые, крупные и средние пески, мелкие и пылеватые пески, а также пески мелкие и пылеватые, содержащие менее 15 % по массе частиц мельче 0,05 мм. Крупнообломочные грунты с заполнителем до 10 %

Слабопучинистые грунты <1-3,5 %

Полутвердые глинистые грунты, средне водонасыщенные  пылеватые и мелкие пески, крупнообломочные грунты с заполнителем (глинистым, песком мелким и пылеватым) от 10 до 30 % по массе

Среднепучинистые грунты <  3,5-7 %

Тугопластичные глинистые грунты. Насыщенные водой  пылеватые и мелкие пески. Крупнообломочные грунты с заполнителем (глинистым, песком пылеватым и мелким) более 30 % по массе

Сильнопучинистые и чрезмернопучинистые грунты > 7%

Мягкопластичные глинистые грунты.
Насыщенные водой пылеватые и мелкие пески.

Для обзора важнейших свойств грунтов и их пригодности для строительства мы предлагаем обратиться  к сводной таблице: 

Таблица. Характеристики грунтов (Таблица адаптирована из раздела R406.1 Международного строительного кода для жилых домов International Residential Code — 2006)

Грунт

Дренажные возможности грунтов

Потенциал подъема уровня грунта при замерзании. (Вертикальные и касательные составляющие сил морозного пучения)

Потенциал расширения грунта при замерзании.   (Горизонтальные  составляющие сил морозного пучения)

Валунный, галечниковый, щебенистый, гравийный, дресвяный. Песок гравелистый и крупный.

Хорошие

Незначительный

Незначительный

Илистый гравий, илистые пески

Хорошие

Средний

Незначительный

Глинистый гравий,  песчано-глинистая гравийная смесь,  глинистые пески

Средние

Средний

Незначительный

Пылеватый и мелкий песок, мелкий глинистый песок,  неорганический ил, глинистый суглинок с умеренной пластичностью

Средние

Высокий

Незначительный

Низко-  и средне пластичные глины, гравелистые глины, илистые глины, песчанистые  глины, тощие глины

Средние

Средний

От незначительного к среднему

Пластичные и жирные глины

Плохие

Средний

Высокий

Неорганические илистые грунты, мелкие слюдянистые пески

Плохие

Высокий

Высокий

Органические непластичные илистые грунты, илистая тугопластичная глина

Плохие

Средние

Средние

Глина и илистая глина средней и высокой пластичности, пластичные илистые грунты, торф, сапропель.

Неудовлетворительные

Средние

Высокие

Пучинистость грунта определяется его составом, пористостью, а также уровнем грунтовых вод (УГВ). Чем выше стоят грунтовые воды, тем больше будет расширяться грунт при замерзании. Способность удерживать и «подсасывать» воду из нижележащих слоев обеспечивается наличием в структуре грунта капилляр и подсосом ими воды. Грунт при расширении замерзающей водой (льдом) начинает увеличиваться в объеме.
Происходит это из-за того, что вода увеличивается в объеме при замерзании на 9-12%. Поэтому, чем больше воды в грунте, тем он более пучинистый. Также выше пучинстость у грунтов с плохими дренажными характеристиками. При промерзании грунта сверху (от уровня земли или планировки) еще незамерзшая вода отжимается льдом в нижележащие слои грунта.
Если дренажные свойства грунта недостаточные, то вода задерживается и быстро промерзает, вызывая дополнительное расширение грунта. На границе раздела положительных и отрицательных температур могут намораживаться линзы льда, вызывая дополнительных подъем грунта.  Чем больше плотность грунта, тем меньше в нем капилляров и пустот (пор) где может задерживаться вода и, следовательно, меньше потенциал расширения при замерзании.
Малозаглубленный ленточный фундамент по определению закладывается на глубины сезоннопромерзающего слоя грунта. При замерзании грунта и начале его движения на фундамент начинает действовать сила, вектор которой приложен перпендикулярно к подошве фундамента (при условии, что подошва лежит в горизонте).
Под действием этой силы, приложение которой зачастую бывает  неравномерным по длине фундамента, фундамент и само здание может подвергаться также неравномерным перемещениям.   Кроме давления вверх, пучинистый грунт при замерзании может оказывать давление и по горизонтали, и по касательной к вертикальной плоскости ленты фундамента.

Сила морозного пучения зависит и от величины отрицательных температур и от продолжительности их действия. Максимальное морозное пучение грунта в России приходится на конец февраля –март.  Если вы строите ленточный малозаглубленный фундамент на сильнопучинстом грунте, вам придется думать, как снизить воздействие не только касательных составляющих сил морозного пучения, но также и их горизонтальных составляющих. Примерзающий к фундаменту грунт способен не только обеспечить боковое сжатие фундамента, но и его защемление силами бокового сцепления и подъем, что может вызвать деформацию фундамента (особенно критично для сборных ленточных  фундамент из блоков).  
Поэтому, если вы решаетесь строить малозаглубленный ленточный фундамент на сильно- или чрезмернопучинистом грунте, вам лучше выбрать в качестве фундамента жесткую монолитную железобетонную раму, а не сборный ленточный фундамент из блоков. К тому же придется повести ряд мероприятий по снижению силы трения между фундаментом и грунтом, и теплотехнические мероприятия для снижения сил морозного пучения.

Таблица. Нормативная глубина сезонного промерзания грунтов, м.


Город

Суглинки, глины

Мелкие пески

Средние и крупные пески

Каменистый грунт

Москва

1,35

1,64

1,76

2,00

Владимир

1,44

1,75

1,87

2,12

Тверь

1,37

1,67

1,79

2,03

Калуга, Тула

1,34

1,63

1,75

1,98

Рязань

1,41

1,72

1,84

2,09

Ярославль

1,48

1,80

1,93

2,19

Вологда

1,50

1,82

1,95

2,21

Нижний Новгород, Самара

1,49

1,81

1,94

2,20

Санкт Петербург. Псков

1,16

1,41

1,51

1,71

Новгород

1,22

1,49

1,60

1,82

Ижевск, Казань, Ульяновск

1,70

 

1,76

 

Тобольск, Петропавловск

2,10

 

2,20

 

Уфа, Оренбург

1,80

 

1,98

 

Ростов-на- Дону, Астрахань

0,8

 

0,88

 

Пенза

1,40

 

1,54

 

Брянск, Орел

1,00

 

1,10

 

Екатеринбург

1,80

 

1,98

 

Липецк

1,20

 

1,32

 

Новосибирск

2,20

 

2,42

 

Омск

2,00

 

2,20

 

Сургут

2,40

 

2,64

 

Тюмень

1,80

 

1,98

 

Что можно сделать для уменьшения воздействия сил морозного пучения грунта на фундамент:

  • Устроить хороший дренаж сезоннопромерзающего грунта вблизи фундамента.
  • Обеспечить водоотведение ливневых и талых вод с помощью твердой или мягкой отмостки.
  • Утеплить поверхность промерзающего грунта вблизи фундамента.
  • Рассмотреть возможность засоления грунтов веществами, не вызывающими коррозии бетона и арматуры.

Самым простым и недорогим способом является горизонтальное утепление грунта  вокруг здания (о котором мы поговорим подробно ниже)  и вертикальное утепление ленточного фундамента.  Кроме снижения теплопотерь дома  (от 10 до 20%), утепление пенополистиролом подземной части фундамента играет еще и важную роль в снижении трения между грунтом и фундаментом при пучении и компенсации расширения грунта.

Важную роль в снижении пучинистости грунтов играет правильное дренирование. Для снижения сил морозного пучения требуется как можно сильнее обезводить грунт в непосредственной близости к малозаглубленному ленточному фундаменту. Для этого траншеи  для ленточного фундамента выкладываются геотекстилем, после отливки фундамента и выполнения гидроизоляции и утепления фундамента, на дно укладываются дренажные трубы кольцевого дренажа вокруг всего дома, и засыпаются дренажной смесью из песка и керамзита, либо просто песком.  Пристеночная дренажная мембрана также помогает отводить воду вглубь – к дренажным трубам.
В особо тяжелых грунтовых условиях можно прибегнуть к полной или частичной замене грунта, подлежащего и прилегающего к малозаглубленному ленточному фундаменту.

В отечественной строительной литературе вообще не рассматривается роль крупных лиственных деревьев в подвижках пучинистых грунтов. Между тем лиственные деревья способны серьезно влиять на режим водонасыщения грунтов.

dom.dacha-dom.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *