Основными преимуществами титановых сплавов являются – .

Содержание

Основными преимуществами титановых сплавов являются

Титан представляет собой серебристо-белый металл, плотность которого составляет 4,5 т/м3. Температура плавления у чистого металла составляет 1660°С, у сплавов она может отличаться на значение до 50-70°. Механические свойства сплавов также существенно отличаются от свойств чистого титана. Так, сплав ВТ1 имеет предел прочности 650 МПа, в то время как у чистого металла он составляет всего 300 МПа.

Главным достоинством титана выступает высокая прочность в сочетании с низким весом. Благодаря этому титан используется как заменитель стали в тех сферах, где вес конструкции критически важен. К таким сферам относят авиационное и ракетное машиностроение. Широкому распространению титана препятствует его высокая цена.

Другим важным достоинством титана выступает высокая стойкость к коррозии. Он устойчив к действию воды, многих органических и неорганических веществ. Быстрое растворение титана происходит только в плавиковой кислоте, концентрированных азотной и серной кислотах. На воздухе титан покрывается плотной и прочной пленкой из оксидов, которые защищают остальной металл от разрушения. Однако химическая активность титана значительно возрастает при температурах выше 500°С, поэтому его не рекомендуется ограниченно использовать для деталей, работающих при повышенных температурах. Предел рабочей температуры составляет 600-700°С для разных сплавов.

Существенным недостатком титановых сплавов выступает плохая обрабатываемость резанием. Сварка этих сплавов затруднена, она производится в защитной атмосфере.

Легирование и термическая обработка титана

Титан имеет две твердые фазы: α–титан и β–титан, переход между которыми происходит при температуре 882°С. Наличие нескольких фаз дает возможность улучшения свойств сплавов на основе титана термической обработкой. Промышленные сплавы титан образуют с ним твердые растворы, которые изменяют температуру перехода.

Легирующие элементы для титана можно разделить на три категории. Первая категория — элементы, стабилизирующие α–титан, к ним относятся азот, алюминий, кислород, углерод. Эти элементы повышают температуру фазового перехода. Второй категорией являются элементы, стабилизующие фазу β–титан, это железо, хром, ванадий и молибден. К третьей категории относятся элементы, не оказывающие влияние температуру фазового перехода. Олово, гафний и цирконий только повышают прочность сплава. В соответствии с требованиями к сплаву выбираются элементы из первой или второй категории, к которым добавляются упрочняющие элементы. Отрицательно на свойства сплавов воздействует водород, поэтому состав подбирается так, чтобы компенсировать его воздействие.

Титановые сплавы подвергаются всем видам термической и химико-термической обработки. Часто применяется увеличение износостойкости поверхности азотирование или цементацией. Также улучшить механические свойства можно обработкой давлением.

Применение титановых сплавов

Несмотря на свои высокие конструкционные свойства, титан ограниченно используется в машиностроении. Существенная часть получаемого титана применяется для производства краски, пластика и бумаги, поскольку диоксид титана является отличным красящим веществом, он обеспечивает белый цвет многим изделиям. В машиностроении используется менее 10% выплавляемого титана.

Сплавы на основе титана делятся на два типа: литейные и деформируемые. В обозначение литейных сплавов указывается буква Л, например ВТ21Л и ВТ31Л. Литейные сплавы имеют худшие механические свойства, но их стоимость ниже. При литье титана необходимо исключить возможность взаимодействия металла, который при высокой температуре становится очень активным, с атмосферой окружающей среды и литейной формой.

Из литейных сплавов популярность пользуется ВТ5Л. Он обладает хорошую пластичностью и свариваемость. Отлитые из него детали не подвержены трещинообразованию. Использовать изделия из ВТ5Л можно использовать при температурах до 400°С. Главным недостатком этого сплава является низкая прочность – 800 МПа. Из деформируемых можно отметить ВТ5 и ВТ14.

Основными сферами использования титана считаются:

  • Летальные аппараты. Из титана выполняются корпуса аппаратов и двигателей, сопки, диски, крепежные детали. В этой сфере прочностные и химические свойства титана используются в полной мере.
  • Оборудование химической промышленности. Титановые сплавы применяются для производства компрессоров, вентилей и клапанов, которые предназначены для работы с агрессивными жидкостями.
  • Ядерная энергетика. Из титана производят оборудование, работающее с ядреным топливом.
  • Судостроение. Титан изредка используется для речных и морских судов, сказывается его высокая стоимость. Наиболее широко титановые сплавы применяются для строительства подводных лодок. Так, наиболее крупные подводные лодки проекта 941 «Акула» имеют значительную часть корпусных элементов из титана.
  • Криогенная техника. Титан сохраняет свои механические свойства до температур -253°С.

Титановые сплавы применяются в порошковой металлургии. В этой сфере широко используется сплав ВТ6. После термической обработки деталь, полученная порошковой металлургии, имеет прочность такую же, как и изделия, изготовленную традиционными способами.

Статья носит ознакомительный характер.
Не забывайте консультироваться со специалистами.

Основные преимущества титановых сплавов, определяющие область применения этого сравнительно нового конструкционного материала, следующие: небольшая плотность — 4,5 кг/м 3 , высокая стойкость против коррозии и высокие прочностные свойства при отсутствии хладноломкости, в том числе при очень низких температурах. Для некоторых сплавов титана характерны, кроме того, хорошие жаропрочные свойства (но они ниже, чем у стали). Титановые сплавы практически превосходят нержавеющие стали, медные и никелевые сплавы в стойкости против коррозии в морской воде, в том числе и при длительной работе, а также в таких агрессивных средах, как влаж­ный хлор, горячая азотная кислота высокой концентрации (и некоторых других). Коррозионная стойкость титановых сплавов дополнительно возрастает при введении очень малых количеств палладия.

Прочностные свойства титановых сплавов различаются в зависимости от состава и структуры, получаемой при термической обработке. Некоторые сплавы титана, обладая меньшей плотностью, не уступают в прочности легированным конструкционным сталям после улучшающей термической обработки. Марки титановых сплавов распределены в табл. по прочности и структуре. Повышенные прочностные свойства, в том числе при нагреве до 550—600°С, имеют титановые сплавы, легированные хромом, что при меньшей плотности, чем у стали, делает их особенно пригодным для деталей, в работе которых развиваются значительные центробежные силы. Вместе с тем сплавы титана уступают сталям, особенно с повышенным содержанием углерода, в твердости и износостойкости, что сильно затрудняет использование их для деталей, работающих в условиях повышен­ного изнашивания.

Легирование позволяет значительно повысить механические свойства титана. Для получения сплавов титан легируют Al, Cr, Fe, Mn, Mo, Sb,V.

Легирующие элементы, входящие в состав сплавов, образуют с титаном твердые растворы замещения (рис. 16.1). Элементы, повышающие тем­пературу aÛb превращения способствуют стабилизации a-твердого раствора и называются a-стабилизаторами (Al, О

2, N2). Элемен­ты, понижающие температуру Тa-b, способствуют стабилизации b-твердого раствора и называются b-стабилизаторами (Mo,V, Nb).

Рис. 16.1. Зависимость фазового состава титановых сплавов от легирующих сплавов

В сплавах титана с Cr, Mn, Fe, Si происходит эвтектоидный распад b-фазы по типу b®a+TiMе с образованием химических соединений – интерметаллидов (титанидов).

Во всех сплавах титана содержится ≈5% алюминия.

Кроме a- и b-стабилизаторов, различают нейтральные упрочнители (Sn, Zr, Hf), не оказывающие существенного влияния на температуру Тα→β. Титановые сплавы (рис. 16.2) подраз­деляют на a-сплавы (одно­фазные), (a+b) — сплавы (двух­фазные), b-сплавы (однофаз­ные).

Рис. 16.2. Диаграмма состояния Ti-Cr, Mn, Fe, Si

1) a — сплавы – ВТ1, ВТ5, ВТ4.

Преимущества: до 650°С сохраняют достаточную прочность, до 1090 °С устойчивы к коррозии, хорошо свариваются.

Недостатки:закалке и старению не подвергаются.

2) ( a+b )- сплавы: ВТ6, ВТ8, ВТ14.

Преимущества: удвоенная прочность по сравнению с нелеги­рованным титаном, хорошая ковкость, пластичность, штампуемость и прокатываемость.

Недостатки:пластичность сварного шва хуже,чем у aсплавов.

3) b -сплавы: ВТ3-1, ВТ22, ВТ15.

Преимущества: отличная пластичность, прочность до 540°С.

Недостатки: чувствительность к загрязнениям.

Термическая обработка титановых сплавов.

Согласно двойным диаграммам состояния титан — легирую­щий элемент, титановые сплавы в зависимости от их состава и назна­чения можно подвергать всем основным видам термической обработ­ки:

рекристаллизационный отжиг применяется в a — сплаве для снятия деформационных напряжений при температуре рекристаллизации Тр =520-850°С в зависимо­сти от химического состава и вида полуфабриката;

отжиг с фазовой перекристаллизацией применяют для (a+b ) — сплавов с целью снижения твердости, повышения пластичности, измельчения зерна, устранения структурной неоднородности при температуре отжига Т

о = 750-950°С;

закалка применяется только для двухфазных сплавов. В этом случае может происходить либо мартенситное превращение, либо фиксирование отдельных фаз.

Основными марками титановых сплавов являются:

ВТ5 (5А1) s =700-950 МПа, d = 10-15 %

ВТ4 (4А1, 1,5 Мn) s =850-1050 МПа, d =10-15 %

ВТ6 (6A1, 4V) s =1100-1150 МПа, d =14-16 %

ВТ15 (4А1, 11Cr, 8Mo) s=1300-1500 МПа, d =4-8%

Литейные сплавы ВТ5Л, ВТЗ-1Л и др. используют для получе­ния фасонных отливок. Для получения качественных отливок исполь­зуют атмосферу инертного газа, либо вакуум, т.к. титан активно взаи­модействует с газами и формовочной смесью.

Титановые сплавы обладают низкими антифрикционными свойства и не пригодны для изготовления трущихся деталей. Для повышения износостойкости применяется азотирование при ≈900 0 С в течение 15-25 ч в диссоциированном аммиаке или в сухом, очищенном от кислорода азоте.

Maгний

Магний — очень легкий металл. Плотность 1,74×10 3 кг/м 3 .Температура плавления 650°С. Это металл серебристо-белого цвета. Полиморфных превращений не обнаружено. Кристаллизуется в гексагональной плотноупакованной решетке с параметрами а=0,32 нм, с=0,52 нм. Электронная конфигурация магния 1s 2 2s 2 2p 6 3s 2 . В воз­бужденном состоянии за счет расспаривания 3s 2 -электронов проявля­ет валентность +2. Магний химически активный металл, легко окис­ляется на воздухе, а при 623 °С воспламеняется, не доходя до темпера­туры плавления. Большую опасность представляет собой магниевая стружка и порошок магния, т.к. они самовоспламеняются на воздухе при обычных температурах и излучают ослепительно белый свет.

Из-за низких механических свойств чистый магний как конст­рукционный материал практически не применяется. Его используют в качестве раскислителя и модификатора при производстве чугунов и цветных металлов, пиротехнике, химической промышленности (катализаторы и т.д.).

Дата добавления: 2015-09-18 ; просмотров: 884 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Титан почти вдвое легче железа и в полтора раза тяжелее алюминия. Плотность титана составляет 4,5 г/см 3 . Использование титановых сплавов, обладающих высокой прочностью, в конструкциях судов и летательных аппаратов позволяет снизить их массу и, следовательно, улучшить тактико-технические данные.

Коррозионная стойкость титана в морской атмосфере и воде, а также в других агрессивных средах делает его незаменимым материалом в судостроении. Высокая коррозионная стойкость титана связана с его химической активностью. Находясь на воздухе, даже при обычной температуре, он стремится вступить в реакцию с кислородом, азотом и другими элементами. В результате интенсивного окисления на поверхности металла образуется тончайшая прочная пленка двуокиси титана, которая предохраняет его от разрушения вследствие коррозии, эрозии и кавитации. При нарушении целостности защитной пленки она самовосстанавливается. Благодаря защитной пленке титан не разрушается даже в азотной и хромовой кислотах, стоек в среде влажного хлора, в щелочах и расплаве ряда металлов. На него не действуют слабые растворы серной и соляной кислот, но при контакте с плавиковой, фосфорной, концентрированными серной и соляной кислотами он интенсивно корродирует из-за разрушения защитной окисной пленки.

Титан не магнитен, что позволяет использовать его сплавы для изготовления немагнитных корпусов изделий. Титан и титановые сплавы обладают высокой температурой плавления (1933 К) и жаростойкостью. Они сохраняют свои прочностные характеристики при длительной работе при температурах 573 — 773 К, а при кратковременном воздействии — до 873-1073 К Это позволяет использовать их в энергетических установках и конструкциях, а также в трубопроводах для транспортирования сред с высокой температурой.

Большинство титановых сплавов являются хладостойкими. Они без заметного изменения прочностных и пластических свойств работают при отрицательных температурах. Благодаря этому титановые сплавы используются в криогенной технике и для изготовления конструкций, работающих в условиях Крайнего Севера.

Активное взаимодействие титана с кислородом, азотом, водородом и другими газами воздуха долгое время служило препятствием для получения титана из руд. С освоением вакуумной технологии обеспечено промышленное получение титана.

В промышленности для производства сплавов и как конструкционный материал широко используется технически чистый титан. Он содержит до 1% примесей, неизбежно попадающих в расплав в процессе металлургического производства. Технически чистый титан относится к пластичным конструкционным материалам низкой прочности. Различные марки технического титана обладают практически одинаковыми физическими свойствами: низкими коэффициентом теплопроводности, коэффициентом линейного расширения и модулем нормальной упругости

mytooling.ru

Титановые сплавы: классификация, свойства, прочность, маркировка

Титан широко распространен на земле. После Al, Fe и Mg он занимает четвертое место из присутствующих металлов в земной коре и является девятым элементом по распространенности на Земле. Титановые сплавы (ТС) обладают уникальным спектром свойств, благодаря сочетанию высокой прочности и жесткости, ударной вязкости и аникоррозионности, что обеспечивает широкий спектр применения для работы в средах, как с низкими, так и высокими температурами, позволяя снизить вес аэрокосмических конструкций и узлов крупногабаритной техники.

Общая характеристика свойств титана и его сплавов

Атомный вес Ti составляет 47.88. Он является упруго жестким,  около 115 ГПа модуля Юнга, прочным, легким, устойчивым к коррозионным процессам. Ti и титановые сплавы обладают пределом прочности на разрыв в диапазоне 210-1380 МПа, что приближается к пределу прочности, характерному для многих сложных сталей.

Он имеет чрезвычайно низкую плотность примерно 60.0% от плотности Fe. Его можно упрочнить путем легирования растворенным веществом. Ti немагнитен и обладает отличными теплообменными способностями. Одним из его важных свойств титановых сплавов — высокая Т плавления – 1725.0 C, то есть почти на 200 C больше, чем у стали, и на 1000 C – чем у Al.

Ti пассивирован, и, следовательно, его сплавы имеют высокую степень устойчивости к воздействию большинства минеральных кислот. Он нетоксичен и совместим с биологическими тканями и минералами. Превосходная коррозионная устойчивость и биосовместимость совместно с превосходной прочностью сделали их полезными для химической промышленности и биоматериалов.  Ti не является хорошим проводником электротока. Если проводимость Cu принять за 100.0%, то у Ti будет  только 3.1%, из этого следует, что он довольно хороший резистор.

титанСлиток титана

Классификация групп

Сплавы Ti подразделяют на следующие группы:

  1. Высокопрочные конструкционные — твердые растворы, с оптимальным соотношением прочностных характеристик и пластичности.
  2. Жаропрочные титановые сплавы — твердые растворы с необходимым количеством присадок, обеспечивающих стойкость в зонах с высокими температурами при незначительном снижении пластичности.
  3. ТС на базе химического соединения, способных конкурировать со сплавами Ni в определенном интервале температур.

Высокопрочные конструкционные ТС

Высокопрочные сплавы – ВТ-14, ВТ-22, ВТ-23, ВТ-15 (1000.0-1500.0 МПа).

ВТ-22 – свариваемый ТС с высокими прочностными характеристиками и прокаливаемостью. Он нашел широкое применение при изготовлении отечественных самолетов: Ил-76/ 86/ 96, Ан-72/ 74/124/224/148, Як-42, МиГ-29 и других. Из данного ТС изготовляются крупногабаритные детали для внутреннего силового набора, узлов шасси и сварных узлов, например, траверс и балок тележек основных шасси.

ВТ- 22И, полученный высокотехнологичным методом изотермического деформирования в условиях сверхпластичности, может обеспечить выпуск тонкостенных деталей сложной конфигурации и гарантирует надежную сварку титановых сплавов. Высокий и стабильный уровень механических свойств достигается однородной мелкозернистой структурой, что снижает трудоемкость мехобработки деталей на 35–40%.

трубыТрубы из титанового сплава для теплообменников

Жаропрочные Ti-сплавы

Жаропрочные титановые сплавы – ВТ3 1, ВТ8-1,ВТ-9, ВТ8М-1, ВТ-18, ВТ-25 (1000.0-1500.0МПа).

ВТ8-1, ВТ8М-1 — эти марки титановых сплавов отличаются жаропрочностью, стойкостью от трещин и стабильностью при Т 400-550С. Они имеют низкую чувствительность к местным напряжениям и используются для авиационных двигателей, имеющих большой ресурс работы.

Отечественный сплав ВТ-25 с прочностным показателем до 1150.0 МПа, значительно превосходит зарубежные аналоги, обладает самыми высокими свойствами при Т до 550.0С.

ВТ-18 обладает самыми прочными свойствами при Т до 600.0С – лучший среди отечественных сплавов, используемых в промышленности.

Химические сплавы

Интерметаллические (химические) титановые сплавы основаны на так называемой интерметаллической фазе. Технический интерес представляют TiAl, Ti3Al, Al3Ti и Ti2AlNb. Свойства интерметаллидов находятся между керамикой и металлами.
TiAl – жаропрочные титановые сплавы, демонстрируют превосходные свойства, такие как жаропрочность, стойкость к окислению и ползучести, низкую плотность и высокую усталостную прочность. При этом TiAl демонстрирует низкую пластичность. Это необходимо учитывать при проектировании компонентов, и это является основным препятствием для широкого использования во многих приложениях.

ТС используется для выпуска поковки, заготовки, пластины и листы из TiAl. Также доступны сложные отливки, потому что он применяется для некоторых высокотемпературных компонентов практически чистой формы. TiAl представляет интерес для таких применений, как лопасти реактивного двигателя, колеса компрессора для турбонагнетателей, автомобильных клапанов и другие жаростойких компонентов. Для высокотемпературного применения, требующего небольшого веса, это хорошая альтернатива суперсплавам до 850 C.

Маркировка титановых сплавов

Существуют две кристаллографические формы титана,  учитывающихся при маркировке:

  • Альфа-титан, в котором атомы расположены в кристаллической решетке;
  • бета-титан, в котором атомы расположены в кристаллической решетке с кубическим телом (BCC).

Чистый титан существует в форме альфа-фазы при температуре выше 883 C и в форме бета-фазы при температуре ниже 883 C.Температура аллотропического превращения альфа-титана в бета-титан называется температурой бета-трансуса.
Легирующие элементы в ТС могут стабилизировать либо альфа-фазу, либо бета-фазу сплава.

Алюминий (Al), галлий (Ga), азот (N), кислород (O) стабилизируют альфа-фазу.

Молибден (Mo), ванадий (V), вольфрам (W), тантал (Ta), кремний (Si) стабилизируют вета-фазу.

Титановые сплавы подразделяются на четыре группы по фазовому составу:

  1. Коммерчески чистые и низколегированные ТС. Он состоит из зерен-фазы и дисперсных сфероидных частиц бета-фазы. Небольшие количества железа, присутствующие в сплавах, стабилизируют бета-фазу и обладает относительно низкой механической прочностью и хорошей коррозионной стойкостью.
  2. Титановые альфа сплавы состоят исключительно из альфа-фазы. Они содержат алюминий в качестве основного легирующего элемента, стабилизирующего альфа-фазу. Они имеют хорошую вязкость разрушения и сопротивление ползучести в сочетании с умеренной механической прочностью, которая сохраняется при повышенных температурах. Такие ТС легко свариваются, но их работоспособность в горячем состоянии оставляет желать лучшего.
  3. Титановые альфа-бета сплавы, содержат 4-6% стабилизаторов вета-фазы, поэтому они состоят из смеси обеих фаз. Сплавы альфа-вета подвергаются термообработке. Они имеют высокую механическую прочность и хорошую горячую форму. Сопротивление ползучести таких ТС ниже, чем у альфа-сплавов.
  4. Титановые бета-сплавы богаты вета-фазой. Они содержат значительное количество вета-фазных стабилизаторов, термически обрабатываемыедо очень высокой прочности и имеют хорошую форму в горячем состоянии. Пластичность и усталостная прочность этих ТС в условиях термообработки низкие.

Титановые сплавы обозначаются согласно их составам:

  • Ti-5Al-2.5Sn идентифицирует титановый сплав, содержащий 5% алюминия и 2,5% олова.
  • Ti-6Al-4V идентифицирует Ti-сплав, содержащий 6% алюминия и 4% ванадия.

Параллельно этой системе обозначений существуют и другие системы обозначения титановых сплавов (ASTM, IMI, военная система).

Производство титана и его сплавов

Титан производится с использованием процесса Kroll. Основные стадии включают извлечение, очистку, производство губки, создание сплава, а также формование. В начале выплавки производитель получает титановые концентраты с рудников. Хотя рутил можно использовать в его естественной форме, ильменит обрабатывают для удаления железа, чтобы он содержал не менее 85% диоксида титана. Эти материалы помещаются в реактор с псевдоожиженным слоем вместе с газообразным хлором и углеродом. Материал нагревают до 900 C, и последующая химическая реакция приводит к образованию нечистого тетрахлорида титана (TiCl4) и оксида углерода. Далее различные нежелательные хлориды металлов, которые образуются, должны быть удалены.

Прореагировавший металл помещается в большие дистилляционные емкости и нагревается. На этом этапе примеси отделяются с помощью фракционной перегонки и осаждения. На этом этапе удаляются хлориды металлов, в том числе железо, ванадий, цирконий, кремний и магний.

Очищенный тетрахлорид титана переносится в виде жидкости в реакторную емкость из нержавеющей стали. Затем добавляют магний, и контейнер нагревают до температуры около 1100 C. Аргон закачивается в емкость для удаления воздуха и предотвращает загрязнение сплава кислородом или азотом. Магний реагирует с хлором с образованием жидкого хлорида магния. Это оставляет твердое титановое твердое вещество, так как температура плавления титана выше, чем в реакции.

Твердое титановое вещество удаляют из реактора путем бурения, а затем обрабатывают водой и соляной кислотой для удаления избытка магния. Полученное твердое вещество представляет собой пористый металл, называемый губкой. Чистая титановая губка может быть преобразована в пригодный для использования сплав с помощью дуговой печи с расходуемым электродом. В этот момент губка смешивается с различными добавками сплава. Точное соотношение материала губки к сплаву формулируется в лаборатории до производства. Затем эту массу прессуют в компакты и сваривают вместе, образуя губчатый электрод.

Губчатый электрод помещают в вакуумно-дуговую печь для плавления. В этом охлаждаемом водой медном контейнере электрическая дуга используется для плавления губчатого электрода с образованием слитка. Весь воздух в контейнере либо удаляется (образуя вакуум), либо атмосфера заполняется аргоном для предотвращения загрязнения.

После изготовления слитка его вынимают из печи и проверяют на наличие дефектов. Поверхность может быть кондиционирована по требованию заказчика. Затем слиток отправляется покупателю готовой продукции, где он может быть измельчен и изготовлен в различные продукты.

производствоПроизводство титана

Область применения

Титановый сплав, который имеет высокую коррозионную стойкость, высокую удельную прочность и хорошую термостойкость, используется для различных частей космического корабля, включая наружную оболочку топливного бака и крылья. Сочетая легкий вес с высокой прочностью, титан помогает усилить планеры и повысить производительность реактивных двигателей. В случае космического челнока, титан используется для многих критических частей, включая наружные панели топливного бака и детали крыла.

В самолетах используется большое количество титанового сплава, потому что он легкий и чрезвычайно прочный при высоких температурах. ТС применяется для укрепления каркасной конструкции и способствует техническому прогрессу реактивных двигателей.

Титановые сплавы применение:

  • Установки для сжиженного природного газа;
  • установки опреснения морской воды;
  • нефтеперерабатывающие заводы;
  • атомные электростанции;
  • автоцистерны для химических реагентов, потому что ТС легок, устойчив к коррозии, и чрезвычайно сильный;
  • теплообменники, которые используются в экстремальных условиях высокой температуры и высокого давления;
  • биомедицинские приложения.

Огромными преимуществами титана являются его высокое отношение прочности к весу и антикоррозионность. В сочетании с нетоксичным состоянием и способностью эффективно противостоять коррозии от биологических жидкостей титан стал базовым металлом для имплантата в области медицины, со сроком службы более 20 лет.

Еще одним преимуществом Ti для применения в медицинской отрасли является его неферромагнитное свойство, позволяющее безопасно обследовать больных с применением МРТ и ЯМР.

титановый протезТитановый протез сустава

Нюансы термообработки титановых сплавов

В настоящее время из-за растущего спроса на титан и его сплавы с улучшенными физическими и химическими свойствами многие исследователи проявляют большой интерес к улучшению процессов обработки под воздействием температуры для получения новых видов сплавов.

ТС подвергаются термообработке для достижения следующего:

  1. Снятие напряжения, чтобы уменьшить остаточные явления, возникающие в процессе изготовления.
  2. Отжиг для достижения оптимального сочетания пластичности, обрабатываемости, стабильности размеров и структурной устойчивости.
  3. Обработка раствора и старение, для увеличения прочности.

Комбинации процессов используются для оптимизации свойств и получения других преимуществ, таких как:

  • Вязкости разрушения;
  • предела выносливости;
  • высокой температуры ползучести;
  • стойкости к преимущественному химическому воздействию;
  • предотвращение искажения;
  • подготовки ковки для последующих операций формования и изготовления.

Термическая обработка титановых сплавов ее типы:

  1. Снятие напряжения. С ТС снимается стресс, без отрицательного влияния на прочность или пластичность. Процесс ковки происходит при температуре от 595 до 705 C в течение до двух часов с последующим воздушным охлаждением. Это уменьшает нежелательные остаточные напряжения, которые могут возникнуть в процессе ковки.
  2. Отжиг, который обычноприменяется для ковки заготовок, не является полным отжигом и может оставить следы холодной или теплой обработки. Дуплексный и триплексный отжиг используются для улучшения сопротивления ползучести и вязкости разрушения.
  3. Обработка раствора и старение. Этот процесс состоит из нагрева сплава до определенной температуры, закалки с контролируемой скоростью в масле, воздухе или воде и старении. Выдержка состоит из повторного нагревания до температуры от 425 до 650 C в течение примерно двух часов. Этот процесс развивает более сильные стороны, чем другие.

Таким образом, Ti -сплавы обладают огромным потенциалом для выбора дизайнером «материала будущего» из-за его уникального сочетания металлургических свойств, таких как высокое отношение прочности к весу в диапазоне температур от минус до 540 C. В этом отношении его базовые сплавы превосходят все обычные конструкционные материалы, что позволяет применять их в самых важных процессах.

1nerudnyi.ru

Свойства титана и его сплавов и сфера их применения

Свойства титана и его сплавов

Вопросы, рассмотренные в материале:

  • Каковы свойства титана
  • Что добавляют в титан для получения сплава
  • Каковы свойства сплавов титана
  • Где используют титан и его сплавы

 

Титановые сплавы обладают таким количеством преимуществ, что это выгодно отличает их от других соединений. Высокая удельная прочность, устойчивость к повышенным температурам, стойкость к коррозии, податливость к сварке – эти и многие другие свойства титана и его сплавов сделали эти материалы особо ценными в сфере металлообработки. В нашей статье мы подробнее рассмотрим все свойства этого удивительного металла.

 

Характеристики титана

В таблице Менделеева Титан (Ti) можно найти под номером 22. Этот металл и его сплавы являются четырехвалентными. Кипение достигается при температуре +3330 °С, а плавление при +1168 °С.

Выделяют два вида титана, которые имеют идентичный химический состав при разном строении. Это обуславливает отличия в их свойствах. Низкотемпературная α-модификация сохраняет устойчивость только до температуры +882,5 °С, β-модификация может выдерживать большую температуру и сохраняет устойчивость до температуры плавления.

Характеристики титана

Титан и его сплавы парамагнитны. Удельное электросопротивление этого материала достаточно высоко 5.562*10-7–7.837*10-7 Ом/м. Он отличается низкой восприимчивостью температуры при нагревании. В случае снижения температуры до 0,45 К, титан становится проводником. Сталь и титан внешне очень похожи.

Если сравнивать титан с алюминием или железом, то его плотность и удельная теплоемкость находятся где-то посередине. Зато он обладает высокой механической прочностью, превосходя в этом параметре алюминий в 6 раз, а чистое железо в 13 раз. Данный материал может быть представлен в любой форме: листами, плитами, трубами и прутками.

Механические и технические свойства титана и его сплавов, а также их химический состав определяются маркой материала. В его состав могут входить следующие элементы:

  • алюминий;
  • молибден;
  • ванадий;
  • марганец;
  • хром;
  • олово;
  • кремний;
  • цирконий;
  • железо.

Свойства титана и его сплавов

Стандартно выделяются три категории титановых сплавов:

  1. Конструкционные и высокопрочные титановые сплавы. Имеют очень твердый состав, благодаря которому достигается идеальный баланс пластичности и прочности.
  2. Жаропрочные титановые сплавы. Имеют твердый состав, включающий в себя определенное количество химического соединения, что несколько снижает пластичность, зато придает высокую жаропрочность.
  3. Титановые сплавы на основе химического соединения. Этот жаропрочный состав имеет малую плотность и может составить конкуренцию никелевым соединениям по жаропрочности при определенной температуре.

Сейчас Ti очень широко используют в конструкционной деятельности. Еще 200 лет назад его считали неподходящим для конструирования, но прошло время, и на данный момент это один из самых долговечных и надежных материалов с широким спектром других полезных свойств.

Свойства титана и его сплавов

Рассмотрим подробнее самые популярные сплавы титана, их свойства и применение:

Технический титан. Полуфабрикаты технического Ti марок ВТ1-00 и ВТ1-0 поставляются в большом количестве металлургическими заводами. В состав этих марок входят примеси железа, азота, кремния, кислорода, углерода и пр. При этом в разновидности ВТ1-0 примесей значительно больше, чем обуславливается его большая прочность и меньшая пластичность по сравнению со второй маркой. Высокая пластичность этих марок позволяет изготавливать тончайшие изделия, включая фольгу.

Рекомендовано к прочтению

Эти материалы не обладают высокой прочностью, поэтому для ее увеличения можно выполнить нагартовку. Правда, при этом снизится пластичность. Нагартовка не является оптимальным методом улучшения свойств данного металла, поскольку пластичность снижается гораздо сильнее, чем повышается прочность. Еще одним недостатком технического Ti является водородная хрупкость. Важно следить за тем, чтобы содержание водорода не превышало 0,008 % в титане ВТ1-00 и 0,01 % в ВТ1-0.

  • Сплав ВТ5 (ВТ5Л).

Для легирования сплава ВТ5 (ВТ5Л) использовали лишь алюминий, который является самым распространенным легирующим средством. Особые свойства алюминия привели его к лидирующим позициям среди всех лигирующих добавок:

  1. алюминий является природным материалом, который можно легко найти и стоит недорого;
  2. меньшая по сравнению с Ti плотность алюминия позволяет значительно повышать удельную прочность получаемого состава;
  3. чем больше в составе алюминия, тем более жаропрочное соединение получается, также увеличивается сопротивление ползучести соединения;
  4. включение в состав алюминия позволяет улучшить показатели модулей упругости;
  5. повышение объема алюминия в соединении снижает их водородную хрупкость.

По сравнению с техническим Ti, для марки ВТ5 характерны такие свойства, как большая прочность и жароустойчивость. Улучшение данных свойств приводит к снижению технологической пластичности Ti. Соединение ВТ5 в горячем состоянии может быть подвергнуто штамповке, ковке и прокату, что позволяет производить профильную, прутковую и штамповочную продукцию. Но основной сферой применения является фасонное литье (марка ВТ5Л), а не металл в деформированном состоянии.

Соединение ВТ5-1 включено в систему Ti-Al-Sn. Технологические свойства титана и его сплавов с алюминием улучшаются за счет олова. Это приводит к снижению окислительных процессов и увеличению сопротивления ползучести. Прочностные свойства этого сплава титана позволяют отнести его к соединениям средней прочности. При этом ВТ5-1 не поддается надрезам, предел его выносливости с достаточным запасом, уровень жаропрочности достигает +450 °С.

Сплав ВТ5-1

С технологической точки зрения ВТ5-1 более предпочтителен (по сравнению с ВТ5). Основная сфера применения: поковки, листы, профили, плиты, штамповки, трубы, проволока и другие виды полуфабрикатов, производимых под давлением.

Соединение образуется путем сваривания. При этом основной материал и сварное соединение обладают одинаковой прочностью. Воздействие высокой температурой не повышает прочности ВТ5-1.

Если необходимо работать при криогенных температурах, то надо контролировать содержание примесей в материале, поскольку превышение допустимого порога может приводить к повышению хладноломкости. Маркировка ВТ5-1кт обозначает состав с пониженным содержанием примесей.

В европейских странах соединение Ti-5A1-2,5Sn используют двумя способами: по стандартному назначению и для работы при криогенных температурах. Состав для криогенной работы маркируют Ti-5AI-2,5Sn ELI и также для поддержания его свойств следят за уровнем примесей.

Высокотехнологичное соединение с малой прочностью маркируют ОТ4-0. Под давлением в результате горячей обработки марганец способен повысить технологичность состава. Это сплав титана псевдо-α-класса с небольшим количеством β-фазы. Не подлежит термическому упрочнению. Сфера применения: поковки, листы, прутки, ленты, штамповки и полосы. Легко принимает нужную форму при холодной и горячей обработке. Допускается даже штамповка в условиях комнатной температуры. Свойства материала прекрасно подходят для сварочных работ.

Среди наиболее технологичных можно выделить сплав титана ОТ4-1. Обладает следующими свойствами: малопрочный, малолегированный псевдо-α-класса системы Ti-Al-Mn, прекрасно деформируется. Можно менять форму этого титанового сплава как в горячем, так и в холодном состоянии. Сфера применения: поковки, листы, профили, плиты, ленты, прутки, полосы и трубы.

На холодную в основном выполняется листовая штамповка, не требующая сложной формы. Если необходимо изготовить более сложную по форме деталь, то желательно подогреть материал до +500 °С. Свойства ОТ4-1 позволяют использовать его для выполнения сварочных работ любым способом. При этом основной металл и сварное соединение будут обладать одинаковой прочностью и пластичностью.

Для полного отжига необходима температура +640…+690 °С (подходит для изготовления листовых полуфабрикатов и их производных) и +740…+790 °С (для изготовления поковок, прутков, штамповки и пр.).

Для неполного отжига достаточно температуры +520…+560 °С. Среди свойств, которые понижают ценность данного сплава, можно выделить невысокую прочность и излишнюю водородную хрупкость (для поддержания оптимальных свойств металла необходимо содержание водорода не более 0,005 %).

Сплав ОТ4-1

Сферы применения титана и его сплавов

Свойства титана и его сплавов нашли широкое применение в ракетной, авиационной и судостроительной отраслях. Титан и ферротитан являются лигирующими добавками к стали. Кроме этого, они могут выступать в качестве раскислителя.

Широкое распространение технический титан получил при изготовлении изделий, подвергающихся агрессивному воздействию среды (например, трубопроводы, клапаны, химические реакторы, арматура и пр.). Даже в электровакуумных приборах, работа которых тесно связана с высокой температурой, сетки и некоторые другие детали изготовлены из этого устойчивого материала.

Среди конструкционных материалов титан занимает четвертое место (после железа, алюминия и магния). Важным свойством титанового сплава с алюминием является высокая стойкость к окислению и повышению температуры, что особенно актуально для авиационной и автомобильной промышленности. Пищевая промышленность и восстановительная хирургия по достоинству оценили такое свойство этого материала, как биологическая безопасность для здоровья человека.

Разнообразие свойств титана и его сплавов довольно широко: высокая механическая прочность, устойчивость к повышению температуры, удельная прочность, стойкость к коррозии, низкая плотность и многие другие. Несмотря на высокую стоимость этого металла, затраты могут быть компенсированы более длительным сроком эксплуатации. А в некоторых ситуациях только этот материал способен выдержать работу в конкретных условиях.

Для авиастроения большое значение имеет такое свойство, как легкость материала в сочетании с высокой прочностью. Возможность использовать легкий Ti для работы в среде, где преобладают высокие температуры, выгодно отличает его от алюминия. Эти свойства титана и его сплавов позволяют использовать их при изготовлении обшивки самолетов, деталей шасси и крепления, и даже для конструирования реактивных двигателей. При этом масса изделия снижается на 10–25 %. Элементы воздухозаборников, лопатки и диски компрессоров, крепеж и многие другие детали производятся именно из титановых сплавов.

Ракетостроение также не обходится без данного материала, поскольку здесь необходимо решать сразу несколько проблем, возникающих из-за слишком малого срока работы двигателей при быстром прохождении плотных слоев атмосферы. Такие проблемы, как статическая выносливость, ползучесть и усталостная прочность, можно преодолеть за счет использования титана.

Свойства технического титана не соответствует в полной мере запросам авиационной отрасли, поскольку он не обладает достаточной тепловой прочностью. Зато его свойство сопротивляться коррозии нашло свое применение в судостроительной и химической промышленности. Здесь с его помощью изготавливают насосы для перекачки кислоты или соли, компрессоры, трубопроводы и запорную арматуру.

 

Емкости и фильтры из этого материала не поддаются негативному влиянию серной и соляной кислоты, а также растворам хлора. Помимо этого, Ti входит в состав материала для изготовления теплообменников, работающих в агрессивной среде (к примеру, в азотной кислоте). В области судостроения его можно встретить в обшивке подводных лодок и других кораблей, в материале торпед и гребных винтов. Удивительные свойства титана и его сплавов способствуют тому, что ракушки просто не налипают на такие детали. Вследствие этого снижается сопротивление судна во время движения.

Повсеместное использование соединений этого металла могло бы приобрести колоссальные темпы, если бы не его высокая стоимость и малая распространенность.

В промышленности соединения титана используются с разными целями в зависимости от их свойств. Так, высокая твердость карбида позволяет изготавливать из него режущие инструменты и абразивы. В производстве бумаги и пластика нашел свое применение белый диоксид. Кроме этого, с помощью него изготавливаются титановые белила.

В лакокрасочной и химической промышленности титаноорганические соединения используются как отвердитель и катализатор. Также в качестве добавки Ti применяют в химической, стекловолоконной и электронной промышленности, где идут в дело его неорганические соединения. Из нитрида титана изготавливают специальное покрытие для инструментов, а для обработки металлов чаще используют диборид как компонент, придающий твердость.

Сферы применения титана и его сплавов

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

vt-metall.ru

Титан и его сплавы

Содержание страницы

Титан по распространенности в земной коре занимает среди конструкционных металлов четвертое место, уступая лишь алюминию, железу и магнию (рис. 1). Титан обладает удельным весом порядка 4500 кг/м3 и довольно высокой температурой плавления, ~1665± 5оС. Титан – парамагнитный металл.

Титанит

брусок кристаллического титана

а                                                                                 б

Рис. 1. Титанит – потенциальный источник титана (а), брусок кристаллического титана (б)

Титан – твердый металл: он в 12 раз твёрже алюминия, в 4 раза – железа и меди. Титан химически стоек. На поверхности титана легко образуется стойкая оксидная пленка TiO2, вследствие чего он обладает высокой сопротивляемостью коррозии в пресной и морской воде и в некоторых кислотах, устойчив против коррозии под напряжением. Во влажном воздухе, в морской воде и азотной кислоте он противостоит коррозии не хуже нержавеющей стали, а в соляной кислоте во много раз лучше ее. При температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость).

Титан имеет две полиморфные модификации (рис. 2):

  • низкотемпературную модификацию α – Ti, устойчивую до 882°С, (ГП – решетка, а = 0,296 нм, с = 0,472 нм)
  • высокотемпературную β – Ti, устойчивую выше 882оС (ОЦК – решетка, а= 0,332 нм).

 

Две полиморфные модификации титана

Рис. 2. Две полиморфные модификации титана: а – αТi (гексагональная плотноупакованная решётка), б – β-Тi (объёмноцентрированная кристаллическая решётка)

Механические свойства титана.

Механические свойства титана

Примечание. В отличие от мартенсита углеродистых сталей, являющегося раствором внедрения и характеризующегося высокой прочностью и хрупкостью, титановый мартенсит является раствором замещения, и закалка титановых сплавов на мартенсит приводит к небольшому упрочнению и не сопровождается резким снижением пластичности.

Значительное влияние на механические свойства титана оказывают примеси кислорода, водорода, углерода и азота, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, гидриды, карбиды и нитриды, повышая его характеристики прочности при одновременном снижении пластичности. Поэтому содержание этих примесей в титане ограничено сотыми и даже тысячными долями процента. Опасность водородной хрупкости, особенно в напряженных сварных конструкциях ограничивает содержание водорода. В техническом титане оно находится в пределах 0,008 – 0,012%.

Титан обладает высокой прочностью и удельной прочностью и в условиях глубокого холода, сохраняя при этом достаточную пластичность.

ТоС+20-70-196
δ, %20-3010-53-10
σв, МПа600-700800…9001000…1200

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ– решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования (рис. 3) благодаря малому соотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов.

Схемы систем скольжения и двойникования

Рис. 3. Схемы систем скольжения и двойникования

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок: ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ(см. табл.1).

Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Таблица 1. Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

МаркаTi, не менееНе болееТвердость НВ,

10/1500/30, не более

FeSiNiCClNO
ТГ-9099,740,050,010,040,020,080,020,0490
ТГ-10099,720,060,010,040,030,080,020,04100
ТГ11099,670,090,020,040,030,080,020,05110
ТГ-12099,640,110,020,040,030,080,020,06120
ТГ-13099,560,130,030,040,030,100,030,08130
ТГ-15099,450,20,030,040,030,120,030,10150
ТГ-Тв99,751,90,100,150,10

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: σв = 375–540 МПа, σ0,2 = 295–410 МПа, δ = 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется (рис. 4). Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения (рис. 5). Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Заготовка титанового шпангоута истребителя

Рис. 4. Заготовка титанового шпангоута истребителя до и после прессования на штамповочном прессе

Аргонная сварка титана

Рис. 5. Аргонная сварка титана

Примечание. При сварке титана и его сплавов требуется уделить особое внимание чистоте рабочего места. Для сварочных цехов, где производятся работы с различными металлами, необходимо выделить специальную область, которая будет использоваться специально для сварки титана. Место, отведенное для этого, должно быть защищено от потоков воздуха, влаги, пыли, жира и других загрязнений, которые могут препятствовать качественной сварке. Это место должно быть защищено от воздействия таких процессов, как зачистка, резка и окраска. Кроме того, должна быть под контролем и влажность воздуха.

Фазовые превращения в титановых сплавах

На формирование структуры и, следовательно, свойств титановых сплавов решающее влияние оказывают фазовые превращения, связанные с полиморфизмом титана. В табл.2 представлены схемы диаграмм состояния «титан – легирующий элемент», отражающие подразделение легирующих элементов по характеру влияния на полиморфные превращения титана на четыре группы.

  1. α Стабилизаторы (Al, O, N), которые повышают температуру полиморфного превращения α↔β и расширяют область твердых растворов на основе α –титана. Учитывая охрупчивающее действия азота и кислорода, практическое значение для легирования титана имеет только алюминий. Он является основным легирующим элементом во всех промышленных титановых сплавах, уменьшает их плотность и склонность к водородной хрупкости, а также повышает прочность и модуль упругости. Сплавы с устойчивой α – структурой термической обработкой не упрочняются.
  2. Изоморфные β – стабилизаторы (Mo, V, Ni, Ta и др.), которые понижают температуру α↔β превращения и расширяют область твердых растворов на основе β – титана.
  3. Эвтектоидообразующие β – стабилизаторы (Cr, Mn, Cu и др.) могут образовывать с титаном интерметаллиды типа TiХ. В этом случае при охлаждении β – фаза претерпевает эвтектойдное превращение β + TiХ. Большинство β – стабилизаторов повышает прочность, жаропрочность и термическую стабильность титановых сплавов, несколько снижая их пластичность. Кроме того, сплавы с (α + β) и псевдо – β – структурой могут упрочняться термообработкой (закалка + старение).
  4. Нейтральные элементы (Zr, Sn) не оказывают существенного влияния на температуру полиморфного превращения и не меняют фазового состава титановых сплавов.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Для титановых сплавов применяют следующие виды термообработки: отжиг, закалка и старение, а также химико-термическая обработка (азотирование, силицирование, оксидирование и др.).

Отжиг проводится для всех титановых сплавов с целью завершения формирования структуры, выравнивания структурной и концентрационной неоднородности, а также механических свойств. Температура отжига должна быть выше температуры рекристаллизации, но ниже температуры перехода в β – состояние во избежание роста зерна. Применяют обычный отжиг, двойной или изотермический (для стабилизации структуры и свойств), неполный (для снятия внутренних напряжений).

Закалка и старение (упрочняющая термообработка) применима к титановым сплавам с (α + β) – структурой. Принцип упрочняющей термообработки заключается в получении при закалке метастабильных фаз β и α с последующем их распаде с выделением дисперсных частиц α и β – фаз при искусственном старении. При этом эффект упрочнения зависит от типа, количества и состава метастабильных фаз, а также дисперсности образовавшихся после старения частиц α и β – фаз.

Химико-термическая обработка проводится для повышения твердости и износостойкости, стойкости к «схватыванию» при работе в условиях трения, усталостной прочности, а также улучшения коррозионной стойкости, жаростойкости и жаропрочности. Практическое применение имеют азотирование, силицирование и некоторые виды диффузионной металлизации.

Таблица 2

диаграммы состояния «титан – легирующий элемент»

Промышленные титановые сплавы.

Титановые сплавы по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

По технологии изготовления титановые сплавы подразделяются на деформируемые и литейные; по уровню механических свойств — на сплавы невысокой прочности и повышенной пластичности, средней прочности, высокопрочные; по условиям применения — на хладостойкие, жаропрочные, коррозионностойкие. По способности упрочняться термообработкой они делятся на упрочняемые и не упрочняемые, по структуре в отожженном состоянии — на α, псевдо-α, (α + β), псевдо-β и β –сплавы (табл.3).

Таблица 3

титановые сплавы

Дефармируемые титановые сплавы

Дефармируемые титановые сплавы

Титановые сплавы невысокой прочности и повышенной пластичности

К этой группе относятся сплавы с пределом прочности σ ≥ 700 МПа, а именно: α – сплавы марок ВТ1-00, ВТ1-0 (технический титан) и сплавы ОТ4- 0, ОТ4-1 (система Ti—Al—Mn), АТ3 (система Ti—Al c небольшими добавками Cr, Fe, Si, B), относящиеся к псевдо – α-сплавам с небольшим количеством β-фазы. Характеристики прочности этих сплавов выше, чем чистого титана благодаря примесям в сплавах ВТ1-00 и ВТ1-0 и незначительному легированию α – и β – стабилизаторами в сплавах ОТ4-0, ОТ4-1, АТ3.

Эти сплавы отличаются высокой пластичностью как в горячем, так и в холодном состоянии, что позволяет получать все виды полуфабрикатов: фольгу, ленту, листы, плиты, поковки, штамповки, профили, трубы и т. п. (рис. 6).

Изделия из титановых сплавов

Рис. 6. Изделия из титановых сплавов

Ковка, объемная и листовая штамповка, прокатка, прессование производятся в горячем состоянии. Окончательная прокатка, листовая штамповка, волочение и другие операции производятся в холодном состоянии.

Для снятия внутренних напряжений, образовавшихся в результате механической обработки, листовой штамповки, сварки и др., применяется неполный отжиг.

Указанные сплавы хорошо свариваются сваркой плавлением (аргонодуговая, под флюсом, электрошлаковая) и контактной (точечная, роликовая). При сварке плавлением прочность и пластичность сварного соединения практически аналогичные основному металлу.

Коррозионная стойкость данных сплавов высокая во многих средах (морская вода, хлориды, щелочи, органические кислоты и т. п.), кроме растворов HF, H2SO4, HCl и некоторых других.

Применение. Эти сплавы широко применяются как конструкционные материалы для изготовления практически всех видов полуфабрикатов, деталей и конструкций, включая сварные. Наиболее эффективно их применение в

авиационно-космической технике (рис. 7), в химическом машиностроении, криогенной технике (высокая ударная вязкость сохраняется до –253oС), (табл. 4), а также в узлах и конструкциях, работающих при температурах до 300–350 ° С.

Применение титановых сплавов в авиационно-космической технике

Рис. 7. Применение титановых сплавов в авиационно-космической технике

Таблица 4 Механические характеристики титановых сплавов при низких температурах

Сплавσв (МПа) при температуре, ° Сδ (%) при температуре, ° СКСU, Дж/см2 при температуре, ° С
–196–253–269–196–253–269–196–253
ВТ1-092013104824220130
ВТ5-11200–

1350

1350–

1600

1710158–109,34030
ОТ41430156013165040
ОТ4-11080139019,417,52330
ВТ3-11650206020206,57,533060
ВТ61640182017,83,53940
ВТ6С131015807–103–64025
ВТ1416501040
Титановые сплавы средней прочности

К этой группе относятся сплавы с пределом прочности σв = 750–1000 МПа, а именно: α – сплавы марок ВТ5 и ВТ5-1; псевдо – α – сплавы марок ОТ4, ВТ20; (α + β) – сплавы марок ПТ3В, а также ВТ6, ВТ6С, ВТ14 в отожженном состоянии. Классификация и химический состав этих сплавов смотри табл. 5.

Сплавы ВТ5, ВТ5-1, ОТ4, ВТ20, ПТ3В, ВТ6С, содержащие небольшое количество β – фазы (2–7 % β – фазы в равновесном состоянии), упрочняющей термообработке не подвергаются и используются в отожженном состоянии. Сплав ВТ6С иногда применяют в термически упрочненном состоянии. Сплавы ВТ6 и ВТ14 используют как в отожженном, так и в термически упрочненном состоянии. В последнем случае их прочность становится выше 1000 МПа, и они будут рассмотрены в разделе, посвященном высокопрочным сплавам.

Рассматриваемые сплавы, наряду с повышенной прочностью, сохраняют удовлетворительную пластичность в холодном состоянии и хорошую пластичность в горячем состоянии, что позволяет получать из них все виды полуфабрикатов: листы, ленту, профили, поковки, штамповки, трубы и др. Исключение составляет сплав ВТ5, из которого листы и плиты не изготавливают из-за невысокой технологической пластичности.

На эту категорию сплавов приходится основной объем производства полуфабрикатов, применяемых в машиностроении.

Все среднепрочные сплавы хорошо свариваются всеми видами сварки, применяемыми для титана. Прочность и пластичность сварного соединения, выполненного сваркой плавлением, близка к прочности и пластичности основного металла (для сплавов ВТ20 и ВТ6С это соотношение составляет 0,9– 0,95). После сварки рекомендован неполный отжиг для снятия внутренних сварочных напряжений.

Таблица 5

Титановые сплавы средней прочности

Обрабатываемость резанием этих сплавов хорошая. Коррозионная стойкость в большинстве агрессивных сред аналогична техническому титану ВТ1-0.

Применение. Данные сплавы рекомендуется применять для изготовления изделий листовой штамповкой (ОТ4, ВТ20), для сварных деталей и узлов, для штампосварных деталей (ВТ5, ВТ5-1, ВТ6С, ВТ20) и др. Сплав ВТ6С широко применяется для изготовления сосудов и ёмкостей высокого давления (рис. 8). Детали и узлы из сплавов ОТ4, ВТ5 могут длительно работать при температурах до 400 ° С и кратковременно — до 750 ° С; из сплавов ВТ5-1, ВТ20 — длительно при температурах до 450–500 ° С и кратковременно — до 800–850 ° С. Сплавы ВТ5-1, ОТ4, ВТ6С также рекомендуются для применения в холодильной и криогенной технике.

Изделия из титановых сплавов ВТ6С Изделия из титановых сплавов ВТ6С

Рис. 8. Изделия из титановых сплавов ВТ6С Высокопрочные титановые сплавы

К этой группе относятся сплавы с пределом прочности σв ≥ 1000 МПа, а именно (α + β) – сплавы марок ВТ6, ВТ14, ВТ3-1, ВТ22. Высокая прочность в этих сплавах достигается упрочняющей термообработкой (закалка + старение). Исключение составляет высоколегированный сплав ВТ22, который даже в отожженном состоянии имеет σв > 1000 МПа.

Указанные сплавы наряду с высокой прочностью сохраняют хорошую (ВТ6) и удовлетворительную (ВТ14, ВТ3-1, ВТ22) технологическую пластичность в горячем состоянии, что позволяет получать из них различные полуфабрикаты: листы (кроме ВТ3-1), прутки, плиты, поковки, штамповки, профили и др. Сплавы ВТ6 и ВТ14 в отожженном состоянии (σв ≥ 850 МПа) могут подвергаться холодной листовой штамповке с малыми деформациями.

Несмотря на гетерофазность структуры, рассматриваемые сплавы обладают удовлетворительной свариваемостью всеми видами сварки, применяемыми для титана. Для обеспечения требуемого уровня прочности и пластичности обязательно проводят полный отжиг, а для сплава ВТ14 (при толщине свариваемых деталей 10–18 мм) рекомендуется проводить закалку с последующим старением. При этом прочность сварного соединения (сварка плавлением) составляет не менее 0,9 от прочности основного металла. Пластичность сварного соединения близка к пластичности основного металла.

Обрабатываемость резанием удовлетворительная. Обработку резанием сплавов можно проводить как в отожженном, так и в термически упрочненном состоянии.

Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах, как и технический титан.

Термическая обработка. Сплавы ВТ3-1, ВТ6, ВТ6С, ВТ14, ВТ22 подвергаются закалке и старению. Рекомендуемые режимы нагрева под закалку и старение для монолитных изделий, полуфабрикатов и сварных деталей приведены в табл. 6.6.

Охлаждение при закалке производится в воде, а после старения — на воздухе. Полная прокаливаемость обеспечивается для деталей из сплавов ВТ6, ВТ6С с максимальным сечением до 40 – 45 мм, а из сплавов ВТ3-1, ВТ14, ВТ22 — до 60 мм.

Для обеспечения удовлетворительного сочетания прочности и пластичности сплавов с (α + β) – структурой после закалки и старения необходимо, чтобы их структура перед упрочняющей термической обработкой была равноосной или «корзиночного плетения». Примеры исходных микроструктур, обеспечивающие удовлетворительные свойства, приведены на рис. 9.

Таблица 6. Режимы упрочняющей термической обработки титановых сплавов

Марка сплаваТемпература полиморфного

превращения Тпп, ° С

Температура нагрева

под закалку, ° С

Температура

старения, ° С

Продолжительность

старения, ч

ВТ3-1960–1000860–900500–6201–6
ВТ6980–1010900–950450–5502–4
ВТ6С950–990880–930450–5002–4
ВТ8,

ВТ9

980–1020920–940500–6001–6
ВТ14920–960870–910480–5608–16
ВТ22840–880690–750480–5408–16

Структура ВТ14 сплава перед упрочняющей термообработки

Рис. 9. Структура ВТ14 сплава перед упрочняющей термообработки

Применение. Высокопрочные титановые сплавы применяются для изготовления деталей и узлов ответственного назначения: сварные конструкции (ВТ6, ВТ14) рис. 10, турбины (ВТ3-1), штампосварные узлы (ВТ14), высоконагруженные детали и штампованные конструкции (ВТ22). Эти сплавы могут длительно работать при температурах до 400 ° С и кратковременно до 750 ° С.

Особенность высокопрочных титановых сплавов как конструкционного материала — их повышенная чувствительность к концентраторам напряжения. Поэтому при конструировании деталей из этих сплавов необходимо учитывать ряд требований (повышенное качество поверхности, увеличение радиусов перехода от одних сечений к другим и т. п.), аналогичных тем, которые существуют при применении высокопрочных сталей.

Сварная конструкция из ВТ14 сплава

Рис. 10. Сварная конструкция из ВТ14 сплава

Литейные титановые сплавы

Литейные титановые сплавы

Титановые литейные сплавы подразделяется на 5 групп в зависимости от микроструктуры (α – сплавы, псевдо α – сплавы, α + β сплавы, псевдо β – сплавы, β – сплавы).

В состав титановых сплавов входят алюминий, ванадий, молибден, кремний, хром, цирконий и др. Эти сплавы обладают свойствами, выгодно выделяющих их из остальных сплавов: по прочности они не уступают сталям, имеют достаточно низкую плотность (~4,5 г/мм3), высокую химическую стойкость при температуре до 500 °С, высокую коррозионную стойкость во влажном воздухе, морской воде, азотной и соляной кислоте. Благодаря этим свойствам титановые сплавы интенсивно внедряются в авиа-, ракета- и кораблестроении.

В справочной литературе приводятся химический состав и механические свойства восьми литейных титановых сплавов – ВТ1Л, ВТ5Л, ВТ20Л, ВТ3-1Л, ВТ6Л, ВТ9Л, ВТ14Л, ВТ22Л, где буква В означает наименование организации-разработчика (ВИАМ), Т – титановый сплав, Л – литейный, цифра – номер сплава. Упоминается и новый сплав ВТ35Л.

Титановые сплавы обладают хорошей жидкотекучестью (460–520 мм), небольшой линейной (0,8–1,2 %) и объемной (2,4–3,2%) усадкой.

Сплав ВТ3-1Л относится к числу наиболее освоенных в производстве (рис. 11).

Прочность титановых сплавов σв = 34…93 кг/мм2, пластичность δ = 4–10%.

Главный недостаток титановых литейных сплавов – высокая температура плавления (до 1665 °С) и активное взаимодействие (при плавке) со всеми газами и огнеупорными материалами. Отсюда – проблема плавки (вакуумная, в атмосфере нейтральных газов) и материалов для литейных форм, что резко удорожает технологические процессы литья.

Детали из титана марки ВТ3-1Л

Рис. 11. Детали из титана марки ВТ3-1Л

Просмотров: 309

extxe.com

Структуры титановых сплавов

Титан подобно железу является полиморфным металлом и имеет фазовое превращение при температуре 882°С. Ниже этой температуры устойчива гексагональная плотноупакованная кристаллическая решетка α-титана, а выше — объемно центрированная кубическая (о. ц. к.) решетка β-титана.

Титан упрочняется легированием α- и β-стабилизирующими элементами, а также термической обработкой двухфазных (α+β)-сплавов. К элементам, стабилизирующим α-фазу титана, относятся алюминий, в меньшей степени олово и цирконий. α-стабилизаторы упрочняют титан, образуя твердый раствор с α-модификацией титана.

структура титановых сплавов

За последние годы было установлено, что, кроме алюминия, существуют и другие металлы, стабилизирующие α-модификацию титана, которые могут представлять интерес в качестве легирующих добавок к промышленным титановым сплавам. К таким металлам относятся галлий, индий, сурьма, висмут. Особый интерес представляет галлий для жаропрочных титановых сплавов благодаря высокой растворимости в α — титане. Как известно повышение жаропрочности сплавов системы Ti — Al ограничено пределом 7 — 8% вследствие образования хрупкой фазы. Добавкой галлия можно дополнительно повысить жаропрочность предельно легированных алюминием сплавов без образования α2-фазы.

Алюминий практически применяется почти во всех промышленных сплавах, так как является наиболее эффективным упрочнителем, улучшая прочностные и жаропрочные свойства титана. В последнее время наряду с алюминием в качестве легирующих элементов применяют цирконий, олово и ванадий. Пример: титановые прутки ВТ6 (Grade 5, Gr.5, Gr5), титановые листы ВТ6 (Grade 5, Gr.5, Gr5), поставляемые ООО «Вариант» для медицинских имплантатов, титановые прутки и трубы марки Grade 9 (Gr.9, Gr9), поставляемые ООО «Вариант» по ASTM B348, ASTM B338.

Цирконий положительно влияет на свойства сплавов при повышенных температурах, образует с титаном непрерывный ряд твердых растворов на основе α — титана и не участвует в упорядочении твердого раствора. Пример: титановые трубы ПТ1-М (ПТ1М), ПТ7-М (ПТ7М).

Олово, особенно в сочетании с алюминием и цирконием, повышает жаропрочные свойства сплавов, но в отличие от циркония образует в сплаве упорядоченную фазу.

Преимущество титановых сплавов с α-структурой — в высокой термической стабильности, хорошей свариваемости и высоком сопротивлении окислению. Однако сплавы типа α чувствительны к водородной хрупкости ( вследствие малой растворимости водорода в α-титане) и не поддаются упрочнению термической обработкой. Высокая прочность, полученная за счет легирования, сопровождается низкой технологической пластичностью этих сплавов, что вызывает ряд трудностей в промышленном производстве.

Для повышения прочности, жаропрочности и технологической пластичности титановых сплавов типа α в качестве легирующих элементов наряду с α-стабилизаторами применяются элементы, стабилизирующие β-фазу.

Элементы из группы β-стабилизаторов упрочняют титан, образуя α- и β-твердые растворы.

В зависимости от содержания указанных элементов можно получить сплавы с α+β- и β-структурой.

Таким образом, по структуре титановые сплавы условно делятся на три группы: сплавы с α-, (α+β)- и β-структурой.

В структуре каждой группы могут присутствовать интерметаллидные фазы.

Преимущество двухфазных (α+β)-сплавов — способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности.

super-splav.ru

Особенности титановых сплавов — Вариант

Одним из важных преимуществ титановых сплавов, поставляемых ООО «Вариант» перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов ВТ1-0, ВТ1-00, ВТ6 (Grade 5, Gr.5, Gr5), Grade 9 (Gr.9, GR9), ВТ9 и других марок над алюминиевыми и магниевыми сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.

Особенности титановых сплавов

Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С – 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.

Еще сравнительно недавно основным критерием при разработке жаропрочных сплавов была величина кратковременной и длительной прочности при определенной температуре. В настоящее время можно сформулировать целый комплекс требований к жаропрочным титановым сплавам, по крайней мере для деталей авиационных двигателей.

В зависимости от условий работы обращается внимание на то или иное определяющее свойство, величина которого должна быть максимальной, однако сплав должен обеспечивать необходимый минимум и других свойств, как указано ниже.

1.Высокая кратковременная и длительная прочность во всем интервале рабочих температур. Минимальные требования: предел прочности при комнатной температуре 100· Па; кратковременная и 100-ч прочность при 400° С – 75· Па. Максимальные требования: предел прочности при комнатной температуре 120· Па, 100-ч прочность при 500° С – 65· Па.

2.Удовлетворительные пластические свойства при комнатной температуре:относительное удлинение 10%, поперечное сужение 30%, ударная вязкость 3· Па·м. Эти требования могут быть для некоторых деталей и ниже, например для лопаток направляющих аппаратов, корпусов подшипников и деталей, не подверженных динамическим нагрузкам.

3.Термическая стабильность.Сплав должен сохранять свои пластические свойства после длительного воздействия высоких температур и напряжений. Минимальные требования: сплав не должен охрупчиваться после 100-ч нагрева при любой температуре в интервале 20 – 500°С. Максимальные требования: сплав не должен охрупчиваться после воздействия температур и напряжений в условиях, заданных конструктором, в течение времени, соответствующего максимальному заданному ресурсу работы двигателя.

4.Высокое сопротивление усталости при комнатной и высоких температурах.Предел выносливости гладких образцов при комнатной температуре должен составлять не менее 45% предела прочности, а при 400° С – не менее 50% предела прочности при соответствующих температурах. Эта характеристика особенно важна для деталей, подверженных вибрациям в процессе работы, как, например, лопатки компрессоров.

5.Высокое сопротивление ползучести. Минимальные требования: при температуре 400° С и напряжении 50· Па остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.

Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше — примерно 2000 – 6000 ч.

Несмотря на высокую стоимость титана, производства и обработки титановых деталей из титановых листов, титановых прутков, титановых труб, поставляемых Вариант, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.

Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы, стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора.

super-splav.ru

Марки титановых сплавов | Техника и человек

Поскольку титан представляет собой металл, обладающий хорошей твердостью, но невысокой прочностью в промышленном производстве большее распространение получили сплавы на основе титана. Сплавы с различной структурой зерна, отличаются между собой строением и типом кристаллической решетки.

Их можно получить при обеспечении в процессе производства определенных температурных режимов. А путем добавления к титану различных легирующих элементов можно получать сплавы, характеризующиеся более высокими эксплуатационными и технологическими свойствами.

При добавлении легирующих элементов и различных типах кристаллических решеток в структурах на основе титана можно получить более высокую по сравнению с чистым металлом жаропрочность и прочность. При этом полученные структуры характеризуются небольшой плотностью, хорошими антикоррозионными свойствами и хорошей пластичностью, что расширяет сферу их использования.

Характеристика титана

Титан представляет собой легкий металл, сочетающий в себе высокую твердость и небольшую прочность, что усложняет его обработку. Температура плавления этого материала в среднем составляет 1665°С. Материал характеризуется невысокой плотностью (4,5г/см3) и хорошей антикоррозионной способностью.

На поверхности материала образуется окисная пленка толщиной в несколько нм, что исключает процессы коррозии титана в морской и пресной воде, атмосфере, окислению под действием органических кислот, процессов кавитации и в конструкциях, находящихся под напряжением.

В обычном состоянии материал не обладает жаропрочностью, для него характерно явление ползучести при комнатных температурах. Однако в условиях холода и глубокого холода материал характеризуется высокими прочностными характеристиками. 

Титан отличается низким значением модуля упругости, это ограничивает его использование для изготовления конструкций, в которых необходима жесткость. В чистом состоянии металл обладает высокими противорадиационными характеристиками и не обладает магнитными свойствами.

Титан характеризуется хорошими пластическими свойствами и легко поддается обработке при комнатных температурах и выше. Сварные швы из титана и его соединений обладают пластичностью и прочностью. Однако, для материала свойственны интенсивные процессы поглощения газов при нахождении в неустойчивом химическом состоянии, возникающем при повышении температуры. Титан в зависимости от газа, с которым соединяется, образует гидридные, оксидные, карбидные соединения, плохо влияющие на его технологические свойства.

Материал характеризуется плохой приспособленностью к обработке резанием, в результате ее проведения он в течение короткого промежутка времени прилипает на инструмент, что снижает его ресурс. Проведение обработки титана резанием возможно с использованием охлаждения интенсивного типа на больших подачах, при низких скоростях обработки и значительной глубине резания. Кроме того в качестве инструмента для обработки выбирается быстрорежущая сталь.

Материал характеризуется высокой химической активностью, что обуславливает использование инертных газов при проведении работ по выплавке, литье титана или проведении дуговой сварки.

В процессе использования титановые изделия необходимо защищать от возможного поглощения газов при вероятности повышения эксплуатационных температур.

Титановые сплавы

Широкое распространение получили структуры на основе титана с добавлением таких легирующих элементов, как:

  • алюминий,
  • медь,
  • железо,
  • никель,
  • молибден,
  • олово,
  • ванадий,
  • хром,
  • цирконий.

Структуры, получаемые деформированием сплавов титановой группы, используются для изготовления изделий, проходящих механическую обработку.

По прочности различают:

  • Высокопрочные материалы, прочность которых составляет более 1000МПа;
  • Структуры, обладающие средней прочностью, в диапазоне значений от 500 до 1000МПа;
  • Низкопрочные материалы, с прочностью ниже 500МПа.

По области использования:

  • Структуры, обладающие коррозионной стойкостью.
  • Конструкционные материалы;
  • Жаропрочные структуры;
  • Структуры с высокой стойкостью к действию холода.

Виды сплавов

По входящим в состав легирующим элементам выделяют шесть основных видов сплавов.

Сплавы типа α-сплавы

Сплавы типа α-сплавы на основе титана с применением для легирования алюминия, олова, циркония, кислорода характеризуются хорошей свариваемостью, понижением границы застывании титана и увеличением его жидкотекучести. Указанные свойства позволяют использовать так называемые α-сплавы для получения заготовок фасонным способом или при отливке деталей. Получаемые изделия этого типа обладают высокой термической стойкостью, что позволяет использовать их для изготовления ответственных деталей, работающих в температурных условиях до 400°С.

При минимальных количествах легирующих элементов соединения называются техническим титаном. Он характеризуется хорошей термической устойчивостью, и обладают отличными сварными характеристиками при проведении сварочных работ на различных аппаратах. Материал обладает удовлетворительными характеристиками по возможности обработки резанием. Не рекомендуется повышение прочности для сплавов этого типа с применением термообработки, материалы этого типа используются после проведения отжига. Сплавы, содержащие цирконий обладают наибольшей стоимостью и отличаются высокой технологичностью.

Формы поставки сплава представлены в виде проволоки, труб, прутков сортового проката, поковок. Наиболее используемым материалом этого класса является сплав ВТ5-1, характеризующийся средней прочностью, жаропрочностью до 450°С и отличными характеристиками при работе в условиях низких и сверхнизких температур. Этот сплав не практикуется упрочнять термическими способами, однако его использование в условиях низких температур предполагает минимальное количество легирующих материалов.

Сплавы типа β-сплавы

Сплавы β-типа получаются при легировании титана ванадием, молибденом, никелем, при этом получаемые структуры характеризуются повышением прочности в диапазоне от комнатных до отрицательных температур по сравнению с α-сплавами. При их использовании увеличивается жаропрочность материала, его температурная стабильность, однако при этом наблюдается снижение пластических характеристик сплавов этой группы.

Для получения устойчивых характеристик сплавы этой группы должны быть легированы значительным количеством указанных элементов. Исходя из высокой стоимости этих материалов, широкого промышленного распространения структуры этой группы не получили. Для сплавов этой группы характерно противодействие ползучести, возможность повышения прочности различными способами, возможность механической обработки. Однако, с увеличением рабочей температуры до 300°С сплавы этой группы приобретают хрупкость.

Псевдо α-сплавы

Псевдо α-сплавы, большую часть легирующих элементов которых составляют компоненты α-фазы с добавлениями до 5% элементов группы β. Наличие β-фазы в сплавах добавляет к преимуществам легирующих элементов α-группы свойство пластичности. Увеличение жаростойкости сплавов этой группы достигается использованием алюминия, кремния и циркония. Последний из перечисленных элементов оказывает положительное воздействие на растворение β-фазы в структуре сплава. Однако, для этих сплавов характерны и недостатки, среди которых хорошее поглощение титаном водорода и образование гидридов, с возможностью возникновения водородной хрупкости. Водород фиксируется в соединении в форме гидридной фазы, уменьшает вязкость и пластические характеристики сплава и способствует увеличению хрупкости соединения.Одним из наиболее распространенных материалов этой группы является титановый сплав марки ВТ18, обладающий жаропрочностью до 600°С, обладает хорошими характеристиками пластичности. Перечисленные свойства позволяют применять материал для изготовления деталей компрессоров в авиастроении. Термическая обработка материала включает отжиг при температурах около 1000°С с дальнейшим воздушным охлаждением или двойной отжиг, позволяющий на 15% увеличить его сопротивление разрыву.

Псевдо β- сплавы

Псевдо β- сплавы характеризуются наличием после проведения закалки или нормализации наличием только β-фазы. В состоянии отжига структура этих сплавов представлена α-фазой со значительным количеством легирующих компонентов группы β.  Эти сплавы характеризуются самым большим среди титановых соединений показателем удельной прочности, обладают низкой термической стойкостью. Кроме того, сплавы этой группы мало подвержены хрупкости при воздействии водорода, однако обладают высокой чувствительностью к содержанию углерода и кислорода, влияющим на снижение вязких и пластичных свойств сплава. Эти сплавы характеризуются плохой свариваемостью, широким диапазоном механических характеристик, обуславливаемых неоднородностью состава и низкой стабильностью при работе в условиях высоких температур.Форма выпуска сплава представлена листами, поковками, прутками и полосовым металлом, с рекомендуемым использованием в течение длительного времени при температурах не выше 350°С. Примером такого сплава является ВТ 35, для которого свойственна обработка давлением при воздействии температуры. После выполнения закалки материал характеризуется высокими пластическими характеристиками и способностью к деформации в холодном состоянии. Проведение операции старения для этого сплава обуславливает многократное упрочнение при наличии высокой вязкости.

Сплавы типа α+β

Сплавы типа α+β с возможными включениями интерметаллидов характеризуются меньшей хрупкостью при воздействии гидритов по сравнению со сплавами 1 и 3 групп. Кроме того, для них свойственна большая технологичность и удобство обработки с использованием различных методов по сравнению со сплавами α-группы. При проведении сварки с использованием материала этого типа для повышения пластичности шва после окончания операции требуется проведение отжига. Материалы этой группы изготавливаются в форме лент, листового металла, поковок, штамповок и прутков. Самым распространенным материалом этой группы является сплав ВТ6, характеризуется хорошей деформируемостью при температурной обработке, сниженной вероятностью водородной хрупкости. Из этого материала производят несущие детали самолетов и жаропрочные изделия для компрессоров двигателей в авиации. Практикуется использование отожженных или упрочненных температурной обработкой сплавов ВТ6. Например, детали тонкостенного профиля или листовые заготовки отжигают при температуре 800°С в дальнейшем охлаждая на воздухе или оставляя в печи.

Сплавы из титана на базе интерметаллидов.

Интерметаллиды — сплав 2ух металлов, один из которых титан.

Получение изделий

Структуры, получаемые литьем, осуществляемым в специальные формы из металла в условиях ограничения доступа активных газов, учитывая высокую активность титановых сплавов при повышении температуры. Сплавы, получаемые при помощи литья, обладают худшими свойствами, по сравнению со сплавами, получающимися методом деформации. Термическая обработка с целью повышения прочности для сплавов этого типа не проводится, поскольку оказывает существенное воздействие на показатели пластичности этих структур.

zewerok.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *