Пенопласт — Новопласт
Сравнивая пенопласт с другими утеплителями нужно отметить следующие его выигрышные качества:
1. Низкая теплопроводность — даже тонкий слой теплоизоляция из пенопласта работает как термос: держит как тепло, так и холод в зависимости от ситуации. Наружное утепление стены пенопластом толщиной 12 см по теплоизоляции сопоставимо кирпичной стене толщиной 2 метра. Так же при наружном утеплении точка росы (образование воды) находится внутри пенопласта, что значительно продлевает срок службы самой стены.
2. Температура эксплуатации пенополистирола составляет от -200 до +80° С.
3. Долговечность (ни время, ни активная среда не меняют свойств и не разрушают пенопласт)
4. Удобство в обращении и эксплуатации благодаря высокой прочности на сжатие при низкой плотности.
5. Экологичность (химическая формула пенопласта [-СН2-С(С6Н5)Н-]n-. Как видно, в полистироле нет ничего, кроме водорода и углерода. Именно это позволяет производить из пенопласта ульи (а пчелу сертификатом и словами не обманешь), рыбные ящики в которых приходит к нам рыба из Норвегии, одноразовая посуда….( а вы видели тарелку из мин.ваты?) .
6. Строители выбирают пенопласт, т.к. пенопласт не выделяет пыль при обработке, не вызывает раздражения кожи, поддается обработке обычным канцелярским ножом.
7. Низкое водопоглащение. Пенопласт не реагирует на изменение влажности, в то время как минеральная вата при высокой влажности катастрофически теряет свои изоляционные свойства.
8. Воздухопроницаемость, что позволяет пенопласту «дышать», свидетельствует этому опыт. В стеклянную трубку поместили пенопласт (как пробку) сверху налили воды…пенопласт не пропустил воду…с другой стороны(снизу) к пенопласту приставили трубку через которую пустили воздух..и что вы думаете..на поверхности пенопласта стали образовываться пузыри с воздухом и всплывать на поверхность воды….это свидетельствует о том что пенопласт пропускает воздух, т.е .дышит, (а попробуйте вместо пенопласта использовать в этом опыте минеральную вату)
9. В ценовой категории пенопласт дешевле минеральной ваты, т.е. наиболее удачное сочетание цены и качества.
10. Современный пенопласт не поддерживает самостоятельного горения более 4 секунд и без источника огня попросту тухнет. Так как в современном пенопласте содержится антипирен-компонент, добавляемый в материалы с целью обеспечения огнезащиты. Горение-это единственное, в чем пенопласт уступает минеральной вате, но дерево тоже уступает кирпичу и бетону. Однако никто не говорит, что мин.вата лучше дерева. Может, стоит задуматься о пожарной безопасности?
Надеемся, что смогли Вас убедить в том, что Вам нужен пенопласт.
nvplast.ru
ООО «ПК ВикРус»
Структура пенопласта под микроскопом
Пенопластами принято называть газонаполненные полимерные материалы с ячеистой структурой. Пенопласты производятся практически из всех известных пластмасс. Обладая практически всеми свойствами монолитных пластмасс, пенопласты в отличие от них гораздо легче, а также имеют отличные электрические характеристики, хорошие теплоизоляционные и акустические свойства. Структура вспененной пластмассы представляет собой твердую пену с ячейками, которые отделены друг от друга или сообщаются между собой и с окружающей средой. Замкнутоячеистые вспененные пластмассы принято называть пенопластами, а открытоячеистые — поропластами. Для их изготовления используют полимеры разных видов, но самым известным и распространенным считается пенопласт пенополистирол.
Рассмотрим свойства наиболее распространенных пенопластов.
Полистирольный пенопласт (ППС)
Пенопласт (пенополистирол) представляет собой вещество белого цвета, состоящее из воздуха, заключенного в огромном количестве мельчайших тонкостенных клеток из вспененного полистирола. Объемная составляющая воздуха в данном виде пенопласта в среднем 98%. Химическая формула данного вида пенопласта [-СН2-С(С6Н5)Н-]n-. Как видно из формулы, вещество полистирол состоит из водорода и углерода и не имеет дополнительных примесей. Полимерные связи полистирола достаточно прочные, поэтому он стабилен и не поддается воздействию многих агрессивных сред.
Сырьем для производства пенополистирола служит эмульсионный суспензионный бисерный полистирол. Сырье, используемое для получения изделий по беспрессовой технологии, должно включать в свой состав газообразователь. Стирол полимеризуют в присутствии порообразующего компонента или полимер насыщают им в конце цикла производства после полимеризации. Для того чтобы пенопласт обладал свойством негорючести в автоклав перед полимеризацией добавляют 3—5% антипиренов — различных бром- и хлорсодержащих органических соединений.
Первым изготовителем и автором технологии промышленного производства пенопласта считается немецкая фирма BASF, которая в 1951 г. начала выпуск пенополистирола с именем «Стиропор». Таким образом, стаж использования пенопласта в качестве утеплительного строительного материала уже 50 лет.
В составе пенопласта отсутствую токсичные вещества, ограничений по его использованию нет. Это подтверждает тот факт, что вот уже на протяжении длительного времени его применяют для производства упаковок продовольственных товаров, имеющих прямой контакт с продуктами питания. Из пенопласта производятся игрушки для детей, а также добавляют в почву в качестве разрыхрытеля. При производстве пенопласта не используют никаких клеевых основ или дополнительных веществ. Склеивание «шариков» вспененного бисерного сырья происходит между собой только за счет воздействия на него пара. За все время применения пенопласта не было необходимости использовать дополнительные средства защиты (например, защитные маски или перчатки).
Полиуретановые пенопласты (ППУ)
Самым известным представителем пенополиуретанов является широко применяемый в быту поролон.
Эта разновидность пенопластов обладает свойством эластичности и имеет открытые поры, в следствии чего хорошо пропускает воздух и водяные пары, его чаще всего используют в изготовлении мебели и различных бытовых предметов, например мочалки. Также из пенополиуретана изготавливают строительные пены.
Пенопласты данного вида недолговечны, под воздействием солнца они желтеют, при этом наружный слой подвергается разрушению.
Пенополиуритановые пенопласты также очень огнеопасны, но могут быть и самозатухающими. В отличие от пенополистирольных пенопластов, их дым токсиченее, так как в его состав входит очень ядовитая синильная кислота.
Полиэтиленовые пенопласты (ППЭ)
Данные пенопласты обладают свойством эластичности. Скорее всего, Вы уже однажды его видели, потому как в тонкие листы из такого пенопласта нередко упаковывают бьющиеся и хрупкие товары.
Наиболее распространённым является экструзионный пенополиэтиленили в сокращении ППЭ. Данная разновидность пенопласта выпускается несколькими изготовителями под разными названиями. В продажу этот пенопласт поступает в виде полупрозрачных гибких листов различной толщины.
Экструзионный пенополиэтилен достаточно долговечен и в этом отношении похож на экструзионный пенополистирол.
Пенополиэтилен горит намного медленнее пенополистирола и с меньшей степенью выделения дыма.
Поливинилхлоридные пенопласты (ПВХ)
Пенопласт данной разновидности близок по своим характеристикам к экструзионному пеннополиэтилену – эластичный, в его составе нет токсичных веществ, но он сам по себе, является самозатухающим, то есть он не горит, если не окружён пламенем от постороннего источника возгорания. Но если уж горит, то выделяет очень удушливый дым, из-за того что в его составе есть синильная кислота.
Интересно? Оставьте закладку, что бы вернуться сюда позже!
penoceh.com
формула, свойства, получение, применение :: SYL.ru
В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.
Общая характеристика
Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН2СН(С6Н5)]n. В сокращенном варианте она выглядит так: (C8H8)n. Сокращенная формула полистирола встречается чаще.
Химические и физические свойства
Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.
Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.
Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится – на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.
Основные свойства полистирола:
- Плотность – 1050-1080 кг/м3.
- Минимальная рабочая температура – 40 градусов мороза.
- Максимальная рабочая температура – 75 градусов тепла.
- Теплоемкость – 34*103Дж/кг*К.
- Теплопроводность – 0,093-0,140 Вт/м*К.
- Коэффициент термического расширения – 6*10-5Ом·см.
Получение полистирола
В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.
Эмульсионный (ПСЭ)
Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.
Процесс происходит следующим образом. В реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.
Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.
Суспензионный (ПСС)
Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации. Процесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.
Блочный (ПСМ)
Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.
Применение полистирола
Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).
Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы – сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы – потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.
Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.
Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».
Преимущества
Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный – оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.
Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.
Недостатки
Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.
Переработка
Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.
Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:
- Утилизация промышленных отходов, которые были сильно загрязнены.
- Переработка технологических отходов методами литья, экструзии и прессования.
- Утилизация изношенных изделий.
- Утилизация смешанных отходов.
Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.
Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.
Сжигание
При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С8Н8 )n + О2 = ↑СО2 + Н2О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.
www.syl.ru
Полистирол: формула, свойства, получение, применение
Полистирол: формула, свойства, получение, применение
В многообразии полимерных материй особенная роль принадлежит полистиролу. Из данной субстанции создаётся колоссальное число разных пластмассовых продуктов для домашнего и индустриального применения.
Длительный временной промежуток увеличение изготовления полистирола удерживалось значительными тарифами на исходники. Прорыв в формировании новейшей подотрасли стали военные действия. Качество полистирола дало возможность использовать его как загуститель для напалма. В мирное время производство подобного рода полимеров приобрело популярность. В настоящее время этот материал с триумфом замещает стеклянные элементы в осветительных приборах, обширно используется в строительных материалах, в упаковке и как украшающий элемент. В современном мире стремительно формируется линия переработки пластика и похожих по строению материалов, т.к. полимерные остатки не являются токсичными и в большом числе сохраняются в неизменённом составе длительных срок.
Общие свойства
Полистирол считается синтетическим полимером, имеющим отношение к подклассу термопластов. Этот продукт предполагает в своём составе наличие стирола, который имеет твёрдую стекловидную структуру.
Химическая формула данного продукта представлена в таком варианте: [СН2СН(С6Н5)]n. В сжатом виде она смотрится в таком виде: (C8H8) n. Материал не растворяется в воде, просто принимает нужную форму и окраску при изготовлении. Растворим в ацетоносодержащих жидкостях, дихлорэтане, толуоле.
Присутствие фенольных соединений в составе полистирола мешает высокоупорядоченному размещению макромолекул и формированию кристаллических строений. Потому этот продукт считается твёрдым, однако непрочным. Полимер считается превосходным диэлектриком. Влияние солнечного излучения на полимер не благоприятно сказывается, могут образоваться трещины, желтизна, возрастает ломкость. При согревании до двухсот градусов полимер распадается с образованием мономера. Материал морозоустойчивый, при температурах выше 60 градусов теряет форму.
Синтез полистирола
По способу производства полистирол разделяется на несколько видов:
- Эмульсионный (ПСЭ). Наиболее устаревший способ получения материала, который не приобрёл обширного индустриального использования. Этот вид полимера получают в ходе полимеризации стирола в гидрофильных растворах щелочей при температурах 80-90 градусов. С целью данного взаимодействия нужны такие ингредиенты, как влага, эмульгатор, стирол, катализатор реакции. Стирол заранее фильтруют от ингибиторов. Соединения калия и двуокись водорода часто провоцируют взаимодействие всех компонентов полимерной реакции. Во время процесса получения полистирола в термореактор вливают растворенное в воде касторовое масло и после размешивания включают в смесь стирол вместе с катализаторами полимерной реакции. Приобретённый состав согревают до 80-95 градусов. Получающийся из крупиц эмульсии мономер, разведённый в мыле, со временем полимеризуется. В конечном итоге выходит полимер в варианте порошка. Целиком убрать примеси (присутствующие во время взаимодействия щёлочи) не получается и получившийся полимер приобретает желтый тон.
- Суспензионный (ПСС). Данный способ исполняется согласно периодической схеме, в термореакторе, снабженном мешалкой и теплоотведением. Стирол подвергают суспензированию. Процедура полимеризации протекает под давлением при непрерывно увеличивающемся терморежиме (до 130 градусов). В результате выходит взвесь, из которой первоначальный полимер отделяют с поддержкой центрифугирования. После этого элемент промывают и высушивают. Данный способ также является устарелым. Его используют для изготовления пенополистирола.
- Блочный (ПСМ). Производство полистирола всеобщего назначения в пределах данного метода возможно осуществить согласно 2 схемам: абсолютной и неполной конверсии. Тепловая автополимеризация согласно постоянной схеме выполняется в концепции, складывающейся из нескольких поочерёдно объединённых термореакторов, любой из которых снабжен мешалкой. При проведении реакции температура идёт на повышение до 200 градусов. Если уровень преобразования стирола достигает 85-90%, процедура прерывается. Данная методика считается более результативной из-за того, что не оставляет остатков производства.
Использование полистирола
Полистирол производится в форме трубчатых гранул. В окончательный продукт этот материал перерабатывают посредством литья. Изделия из этого вида полимера отличаются огромным многообразием. Это могут быть орудия быта, игрушки, элементы декора, упаковки, одноразовый инвентарь. Также полистирол необходим в строительстве. Из пенополистирола производят конструкции, которые подобно термосу не пропускают тепло. Также из-за морозоустойчивости данного материала его можно применять для изготовления ульев для зимовки пчёл, уличных конструкций в зимнее время.
www.simplexnn.ru
Физические свойства пенополистирола
Содержание страницы:
Пенополистирол (пенопласт) — теплоизоляционный материал белого цвета. Микроскопические тонкостенные клетки полистирола заполнены воздухом (ПСБ) или углекислым газом в случае, если это самозатухающийся пенополистирол (ПСБ-С).
В строительстве интенсивно применяются качественные теплоизоляционные пенополистирольные плиты со стойкими свойствами, низкой стоимостью, простым и быстрым монтажом.
Более полувека, пенополистирол используется при утеплении фасадов с наружным штукатурным слоем.
На сегодняшний день различают пять основных видов производимого пенополистирола:
- Прессовый пенополистирол.
- Беспрессовый пенополистирол.
- Экструзионный пенополистирол.
- Автоклавный пенополистирол.
- Автоклавно-экструзионный пенополистирол.
Энергоэффективность и теплопроводность
Коэффициент теплопроводности — основная характеристика теплоизоляционных материалов.
Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий» | ||
---|---|---|
Материал стены | Коэффициент теплопроводности | Требуемая толщина в метрах |
Вспененный пенополистирол | 0,039 | 0,12 |
Минеральная вата | 0,041 | 0,13 |
Клееный деревянный брус | 0,16 | 0,5 |
Пенобетон | 0,3 | 0,94 |
Керамзитобетон | 0,47 | 1,48 |
Кладка из дырчатого кирпича | 0,5 | 1,57 |
Газосиликат | 0,5 | 0,47 |
Шлакобетон | 0,6 | 1,88 |
Кладка из силикатного полнотелого кирпича | 0,76 | 2,38 |
Железобетон | 1,7 | 5,33 |
Влагостойкость
Теплоизоляционные пенополистирольные плиты не гигроскопичны. Проницание воды в утеплитель составляет не более 0,25 мм за год. Влагостойкость пенополистирола основывается от его структурных характеристик, технологии производства, плотности и продолжительности времени водонасыщения.
Канадская ассоциация строителей разработала и провела ряд испытаний над вспененным пенополистиролом и они выяснили степень воздействия на утеплитель агрессивных погодных условий. В ходе эксперимента материал замораживался и размораживался 50 раз в 4% растворе хлорида натрия. Соляной раствор обеспечивал суровые условия испытания. По итогам эксперимента не выявлено никакого воздействия ни на структуру, ни на сохраность структуры утеплителя.
Пожаробезопасноть
Антипирены (специальные модифицированные добавки) добавляемые производителями пенополистирола, благодаря которым материалу присваиваются различные классы по дымообразованию, воспламенению и горючести.
Данное вещество добавляется в пенополистирол для существенного снижения пожароопасности материала.
В соответствии сертификационного класса, пенополистирол с добавлением антипиренов отличается по степени высокотемпературной деструкции. Пенополистирол сертифицированный по классу Г1 — слабогорючий, степень повреждения по длине испытываемого образца не более 65 процентов.
«Деполимеризация стирола может идти при температурах выше 320°С, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от -40°С до +70°С нельзя. В научной литературе имеются данные о том, что окисления стирола при температуре до +110°С практически не происходит».
Экспертизой доказано отсутствие падения ударной вязкости утеплителя при температуре +65°С в периоде 5000 часов. Так же не выявлено падения ударной вязкости при +20°С в течении 10 лет.
Пенополистирол маркированный буквой «С» в конце названия (например — ПСБ-С) — называется самозатухающимся (класс горючести Г1).
Монтаж производимый в соответствии СНИП 3.04.01-87 «ИЗОЛЯЦИОННЫЕ И ОТДЕЛОЧНЫЕ ПОКРЫТИЯ» и нормам ГОСТа 15588-2014 «Плиты пенополистирольные теплоизоляционные. Технические условия», не является угрозой пожароопасности строительных сооружений.
Биологическая и химическая нейтральность
Зачастую вредность стирола входящего в состав пенопласта или пенополистирола часто преувеличивают.
Проведённые Европейским Химическим Агентством в 2010 г. крупномасштабные научные исследования в соответствии с регламентом REACH, опубликованы следующие выводы:
- Мутагенность — нет оснований для классификации;
- Канцерогенность — нет оснований для классификации;
- Репродуктивная токсичность — нет оснований для классификации.
Эксперимент доказал что, токсичность стирола, не выделяется при использовании утеплителя.
Срок службы пенополистирола
Во время эксплуатации материал не вызывает раздражения кожи, экземы или раздражения дыхательных путей, и глаз. Для работы с материалом не требуется специальных инструментов или снаряжения. Резка возможна с использованием простых инструментов, таких как, ручная пила или нож. Монтаж пенополистирольных плит достаточно простой процесс благодаря низкому весу утеплителя. Всё это делает пенополистирол безопасным и практичным при эксплуатации в гражданском, промышленном и транспортном строительстве.
Монтаж пенополистирола
Долговечность эксплуатации подтверждена различными испытаниями. В 1999 г. Шведский королевский технологический институт опубликовал результаты исследования, научно-исследовательской работы. Опыты обозначили минимальные сроки службы строительных материалов в конструкциях зданий. Так для пенополистирола минимальный срок службы был определён в 60 лет.
www.bus-rus.com
Пенополистирол формула — Портал о стройке
Экструзионный пенополистирол не имеет аналогов среди строительных материалов и уже не раз использовался мной при ремонте квартиры своими руками. Если кто-то упустил эти моменты, то напомню:
Плавающая стяжка пола, но основе стяжки из ЦПС и разделительного слоя
Сухая стяжка пола Кнауф без использования сухой засыпки
Утепление пола на балконе
Также готовится мастер-класс по утепление балкона до состояния жилого помещения или с возможностью присоединения к комнате. Опять же с применением пенополистирола. Но перед этим предлагаю познакомится с материалами для утепления поближе.
Экструзионный или экструдированный пенополистирол
Все это названия одного и того же синтетического материала для теплоизоляции, впервые произведенного аж в 1941 году, в CША. Поэтому в обозначениях встречается иногда и английская аббревиатура XPS (Extruded Polystyrene). Пример: URSA XPS.
В отличии от беспрессованного пенопласта, эппс производится методом экструзии, при повышенной температуре и давлении, с применением специальных вспенивающих агентов. Качественный экструдированный пенополистирол имеет равномерную закрытопористую структуру с очень маленьким диаметром ячеек, не более 0,2мм.
Экструдированный пенополистирол характеристики
Главное его преимущество-высокая прочность, благодаря этому качеству допускается применение пенополистирола в вспомогательных
и несущих конструкциях.
Высокая плотность, до 45кг/м3 позволяет использовать его даже при строительстве дорог и взлетно-посадочных полос для исключения промерзания земляного полотна.
А уж с нагрузкой от стяжки пола, ЭППС и вовсе справится без проблем.
В строительных магазинах в основном можно купить экструзионный пенополистирол средней плотности 35 кг/м3, в виде плит размером 600*1200мм и толщиной от 2 до 10см. Лучше, если плиты будут иметь ступенчатую кромку, что позволит исключить сквозные щели при монтаже.
Экструзионный пенополистирол имеет лучшие теплоизоляционные характеристики в сравнении с обычным (низкой плотности).
- Теплопроводность 0,033 Вт/мК
- Водопоглощение 0.2-0.4% по объему за 24 часа
- Удельный вес 25-45 кг/м3
Недостатки экструзионного пенополистирола
Основные недостатки, это худшая в сравнении с пенопластом паропроницаемость и высокая горючесть.
За счет специальных добавок производители обычного пенопласта добились характеристик практически негорючих материалов, классы
Г1 и В1. Но пенополистирол относится к горючим материалам (Г3-Г4), радует лишь то, что у качественного материала очень низкий
показатель токсичности горения (не более Т2), что сопоставимо с изделиями из дерева. Поэтому, если предъявляются повышенные
требования к пожарной безопасности, то следует купить экструзионный пенополистирол с группой горючести Г3 (нормальногорючие) или лучше. А пенополистирол с Г4 (сильногорючий) не применять.
stroyka.ahuman.ru
Состав, свойства и применение пенополистирола
Пенополистирол широко применяется в строительстве в качестве универсального утеплителя. Представляет собой газонаполненный материал, получаемый из полистирола и его производных, а также из сополимеров стирола. Благодаря своей структуре пенополистирол чрезвычайно лёгкий и недорогой материал, обладающий уникальными теплоизоляционными свойствами.
Состав пенополистирола
Содержание статьи
При вакуумном способе получения, газа в продукте вообще не будет. Вместо первого компонента, в зависимости от необходимости, могут использоваться другие полимеры. Например:
- Полимонохлорстирол;
- Полидихлорстирол;
- Сополимеры стирола с прочими одномерными (например, акрилонитритом).
Технология получения материала
Технология получения пенополистиролаТребует наличия на стадии изготовления разнообразных вспенивающих веществ для заполнения массы полимерного вещества газами. Это могут быть лёгкие для кипения углеводороды (такие, как петролейный эфир, изопентан, пентан или обычный дихлометан) или специальные вещества, которые образуют газ (аммоний нитрат, диаминобензол, азобисизобутиронитрил).
Помимо всего перечисленного, дополнительными компонентами получаемого изделия могут становиться разнообразные вещества, которые так или иначе улучшают его характеристики:
- Антипирены — объект статьи сам по себе не обладает высокой жароустойчивостью, а это значит, что в отдельных случаях эту жароустойчивость необходимо повышать при помощи добавления в полистирол веществ, которые обеспечивают достаточную огнезащиту;
- Пластификаторы — для уменьшения ползучести смеси в процессе застывания и высыхания;
- Наполнители — для изменения характеристик материала в целом и заполнения гранул чем-то ещё;
- Красящие вещества — для придания готовому пенополистиролу определённых эстетических качеств.
Исходя из названия этого материала, можно сделать вывод о том, что этот объект получают из исходного сырья — полистирола. В обычном случае, расплавленную массу полимера наполняют газом при помощи вспенивания.
В дальнейшем, готовая смесь полимерного материала и газа нагревается паром. Благодаря этому, гранулы увеличиваются в объёме и распределяются равномерно по всему объёму смеси и спекаются друг с другом в одно целое. В результате полистирол резко набирает в объёме.
Схема цеха по производству пенополистиролаДля получения огромных объёмов необходимого материала, количество полимера относительно небольшое. Сам материал очень лёгкий и после формования готов к дальнейшей физической обработке и использованию.
Помимо описанного способа, существуют методы получения этого материала при помощи углекислого газа (в том случае, если необходим жаростойкий пенополистирол), или без какого либо газа вообще (гранулы в нём заполнены вакуумом).
Свойства
Изделие обладает рядом физических химических и биологических свойств. Если говорить о механических особенностях, то можно судить о значительной прочности на воздействие краткосрочных нагрузок и нагрузок средней длительности. Такой объект в международных классификациях характеризуется как жесткий пенопласт (ДИН 7726). В соответствии с таблицами, этот материал может выдержать десятипроцентное сжатие в объёме. Но, в нормативных документах отмечается, что после такого сжатия, изделие уже не восстановит свою первоначальную форму.
Отдельными физическими свойствами, являются теплоизолирующие свойства пенополистирола, его водонепроницаемость (однако, не стоит забывать про диффузию водяного пара) и регулируемую (в зависимости от условий и качества изготовления) пластичность.
Утепление пола пенополистироломВ сравнении с другими материалами в определённых документах приводятся значения необходимой толщины покрытия из других материалов, что бы соответствовать толщине изоляции из пенополистирола всего в 12 сантиметров. При одном взгляде на эти цифры, всё становится понятно.
Шкала толщины материалов при одинаковой теплопроводностиПо действующим российским строительным нормам толщина стен, одинаково препятствующих теплопотерям в здании, должна быть примерно:
- Железобетон — 4 м 20 см;
- Кирпич — 2 м 10 см;
- Керамзитобетон — 90 см;
- Дерево — 45 см;
- Минеральная вата — 18 см;
- Пенополистирол — 12 см.
Эти показатели весьма впечатляют. На сегодняшний день, есть совсем немного причин для того, чтобы отказываться от теплоизоляции из субъекта статьи.
Характеристики
Стоит остановиться подробнее на каждой из характеристик пенополистирола.
Схема утепления фундаментаКрайне низкая теплопроводность
Благодаря тому, что воздух составляет подавляющий объём во всём готовом изделии, можно судить о хороших теплоизолирующих качествах пенополистирола(а значит такой материал будет замечательно сохранять тепло в помещениях, повысит эксплуатационные сроки трубопроводов, обеспечит высокую надёжность и понизит потери тепла на тепломагистралях, послужит хорошей изоляцией на стационарных холодильных установках, защитит товары на складских помещениях, служит хорошим упаковочным материалом).
В наше время, когда цены на энергоносители скачут вверх ежемесячно, стоит подумать именно про максимальную изоляцию помещений от разного рода потерь тепла.
Если посмотреть на подавляющее большинство зданий в городах СНГ в тепловизор зимой, то можно увидеть, как потоки тепла покидают квартиры через стены наружу. С теплоизоляцией из субъекта статьи картина резко меняется. На смену ярко-красным и жёлтым пятнам(горячий, высокий уровень потерь тепла) приходят оттенки синего (потерь тепла почти не наблюдается) и фиолетового.
Стоит ли объяснять, что на обогрев такого помещения понадобиться куда как меньше энергии и тепла? И всё это, благодаря покрытию толщиной в 12 сантиметров. Вот насколько низка теплопроводность этого материала!
Практически, абсолютная водонепроницаемость
Готовое изделие почти не впитывает воду, совсем не разбухает, слабо подвержено процессу капиллярной диффузии (объект статьи не гигроскопичен и будет хорошей изоляцией от осадков, выпадения росы, высокой влажности).
Готовое изделие почти не впитывает водуТак, например, известно, что объект совсем не гигроскопичен. Он не впитывает воду, даже будучи полностью погруженным в неё. Единственное явление проникновения воды в отдельные микроскопические гранулы материала. Но такое проникновение нельзя назвать значительным.
Даже при погружении в воду, объём поглощенной воды не будет превышать 3% от всего веса плиты. И даже в таком состоянии все прочие свойства материала не пострадают и останутся неизменными. Иначе говоря, изделие можно спокойно эксплуатировать в условиях с любой влажностью.
В то же время защита от проникновения водяного пара тоже радует. Скорость проникновения водяного пара в плиту составит не больше, чем 1% от самой скорости движения в воздушном пространстве вокруг пенополистирольной плиты. В то же самое время стоит отметить, что водяной пар и жидкая вода легко выходят из этого материала обратно.
Если соблюдать требования по эксплуатации, то можно использовать плиты для утепления цокольных этажей и подвальных стен. Там вещество изолятора будет находиться в постоянном контакте с грунтом, но на его свойствах это не отразится.
Прочность
Специалисты отмечают высокую прочность готового изделия и на изгиб и на сжатие. В зависимости от технологии изготовления, упругая зона деформирования пенополистирола может включать в себя 10% от всего объёма плиты. Если использовать в качестве исходного сырья не полистирол, а другие полимеры, то упругость материала можно повысить или снизить. Прочность готового изделия на сжатие, может составлять до 25 т на метр квадратный. Фактически, эта прочность недостижима для многих других материалов, которые имеют сходное с пенополистиролом применение.
Химические свойства
Говоря о химических свойствах, стоит упомянуть тот факт, что пенопласт чрезвычайно устойчив к подавляющему большинству химических веществ. Именно благодаря этому этот изолятор универсален и может эксплуатироваться в разнообразных средах.
В нормативных документах указана подробная сводка по устойчивости к распространённым веществам:
- Раствор соли (или морская вода) — полностью устойчив;
- Мыла и растворённые в воде смачивающие вещества — наблюдается стабильная устойчивость;
- Отбеливатели — устойчив;
- Разведённые в воде кислоты — устойчив;
- Серная кислота — быстро растворяется;
- Распространённые щелочные металлы — устойчив;
- Органические растворители — не устойчив;
- Насыщенные алифатические углеводороды, медицинский бензин — не устойчив;
- Углеводородные энергоносители — не устойчив;
- Спирты — условно устойчив.
При использовании лакокрасочных материалов, необходимо учитывать возможную вероятность нарушения структуры пенополистирола.
Звукоизоляция
Акустические свойства материала сильно зависят от одного фактора способности материала к преобразованию энергии звуковой волны в тепло. И именно здесь как нельзя кстати оказываются высокие теплоизоляционные свойства субъекта статьи. Речь идёт о ячеистой структуре пенополистирола.
Для полной звукоизоляции помещения необходима пенополистирольная плита толщиной в два или три сантиметра. В дальнейшем, чем выше толщина плиты, тем выше соответствующие свойства.
Также стоит отметить, что свойства самого пенополистирола могут быть улучшены, если создавать объект с высоким содержанием открытых пор и гранул воздуха.
Биологические свойства
Говоря о биологической устойчивости субъекта статьи, стоит вспомнить о том, что он не представляет никакого интереса ни для микроорганизмов, ни для каких либо еще насекомых или животных. Он не создаёт для них благоприятную среду, не пригоден в еду ни одному живому существу, не подходит для грибков и плесени. Пенополистирол биологически нейтрален и устойчив.
Также следует отметить, что изделие совершенно не токсично ни для человека ни для прочих живых организмов. По крайней мере, на протяжении многих лет использования этого вещества в качестве упаковочного, никаких происшествий, отравлений или ранений не было отмечено. Из этого вещества делают упаковки для пищевых продуктов.
Огнестойкость
Пенополистирол устойчив к пожарам. Его температура горения в два раза превышает аналогичную у бумаги, и в 1.8 раза превышает температуру самовоспламенения необработанной древесины.
Пенополистирол горит, как и многие другие материалы, но сам по себе горение не поддерживает. Если открытого огня не будет, то пенополистирол потухнет через несколько секунд.
Также, отмечается высокая долговечность материала (не разлагается под действием окружающей среды, срок годности в нормальных условиях почти неограничен.
Виды производимого пенополистирола
Применение пенополистирола возможно разнообразными методами. Однако, свойства объекта говорят сами за себя.
Хорошее применение
- Теплоизоляция;
- Гидроизоляция и влагоизоляция.
- Звукоизоляция.
Критерии выбора
Наиболее интересным является употребление в строительстве. Однако, применение материала именно в этой области мало изучено. Существует ряд критики именно по этому вопросу. Однако, с развитием технологии каркасного строительства, изделие активно используется на малых и крупных строительных предприятиях.
Пенополистирол в строительствеУже исходя из вышеописанного технического процесса, можно сделать вывод о том, что этот компонент будет чрезвычайно лёгким и недорогим, и может широко применяться в строительном производстве в качестве универсального утеплителя для стен или упаковочного материала.
Как и любой другой строительный материал, пенополистирол подвергался многочисленным проверкам и исследованиям. Благодаря этим исследованиям, свойства пенополистирола уже полностью изучены. Пенополистирол — объект, которым пользуются в строительстве на протяжении длительного периода времени.
Выбор конкретной марки пенополистирола должен зависеть от условий эксплуатации изделия.
Видео
Посмотрите видео о технологии производства, свойствах и способах применения полистирола
fastbuildings.ru