Как определить минимальный процент армирования конструкции?
Нормы дают нам ограничение в армировании любых конструкций в виде минимального процента армирования – даже если по расчету у нас вышла очень маленькая площадь арматуры, мы должны сравнить ее с минимальным процентом армирования и установить арматуру, площадь которой не меньше того самого минимального процента армирования.
Где мы берем процент армирования? В «Руководстве по конструированию железобетонных конструкций», например, есть таблица 16, в которой приведены данные для всех типов элементов.
Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?
Во-первых, нужно понимать, что ищем мы обычно не площадь всей арматуры, попадающей в сечение, а именно площадь продольной рабочей арматуры. Иногда эта площадь расположена у одной грани плиты (в таблице она обозначена как А – площадь у растянутой грани, и А’ – площадь у сжатой грани), а иногда это вся площадь элемента. Каждый случай нужно рассматривать отдельно.
На примерах, думаю, будет нагляднее.
Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.
1) Найдем площадь сечения бетона 1 погонного метра плиты:
1∙0,175 = 0,175 м² = 1750 см²
2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):
0,05%
3) Составим известную со школы пропорцию:
1750 см² — 100%
Х – 0,05%
4) Из пропорции найдем искомую минимальную площадь арматуры:
Х = 0,05∙1750/100 = 0,88 см²
5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.
Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.
Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.
Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:
1) Найдем ширину ребра приведенного двутаврового сечения плиты:
1,2 – 0,15∙5 = 0,45 м
2) Найдем площадь сечения плиты, требуемую условиями расчета:
0,45∙0,2 = 0,09 м² = 900 см²
3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):
0,05%
4) Составим пропорцию:
900 см² — 100%
Х – 0,05%
5) Из пропорции найдем искомую минимальную площадь арматуры:
Х = 0,05∙900/100 = 0,45 см²
6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.
И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.
Пример 3. Дан железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.
1) Найдем площадь сечения фундамента:
1,5∙1,5 = 2,25 м² = 22500 см²
2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/1.5 = 4,4 < 5 (для прямоугольного сечения):
0,05%
3) Из пункта 2 примечаний к таблице 16 (см. рисунок выше) определим, что мы должны удвоить процент армирования, чтобы найти минимальную площадь арматуры всего сечения фундамента (а не у одной его грани!), т.е. минимальный процент армирования у нас будет равен:
2∙0,05% = 0,1%
4) Составим пропорцию:
22500 см² — 100%
Х – 0,1%
4) Из пропорции найдем искомую минимальную площадь арматуры:
Х = 0,1∙22500/100 = 22,5 см²
5) Принимаем шаг арматуры фундамента 200 мм, значит по периметру мы должны установить 28 стержней, а площадь одного стержня должна быть не меньше 22,5/28 = 0,8 см²
6) По сортаменту арматуры находим, что мы должны принять диаметр арматуры 12 мм. То есть меньше этого мы устанавливать не имеем права.
И снова обратите внимание! В данном примере мы определяем площадь арматуры не у одной грани фундамента, а сразу для всего фундамента, т.к. он заармирован равномерно по всему периметру.
Пример 4. Дана железобетонная колонна сечением 500х1600 (рабочая высота сечения колонны в коротком направлении h₀= 460 мм). Расчетная высота колонны равна 8 м. Определить минимальный процент армирования у длинных граней колонны.
1) Найдем площадь сечения колонны:
0,46∙1,6 = 0,736 м² = 7360 см²
2) Найдем в таблице 16 руководства минимальный процент армирования для колонны (внецентренно-сжатого элемента с l₀/h = 8/0.5 = 16):
0,2%
3) Составим известную со школы пропорцию:
Х – 0,2%
4) Из пропорции найдем искомую минимальную площадь арматуры:
Х = 0,2∙7360/100 = 14,72 см²
5) Из руководства по проектированию находим, что максимальное расстояние между продольной арматурой в колонне не должно превышать 400 мм. Значит, у каждой грани мы можем установить по 4 стержня (между угловой арматурой колонны, которая является рабочей, и ее площадь определялась расчетом), площадь каждого из стержней равна 14,72/4 = 3,68 см²
6) По сортаменту находим, что у каждой грани нам нужно установить 4 стержня диаметром 22 мм. Если считаем, что диаметр великоват, увеличиваем количество стержней, уменьшая тем самым диаметр каждого.
Обратите внимание! Мы определяем площадь арматуры у каждой из двух граней колонны, именно она соответствует минимальному проценту армирования в данном случае.
Пример 5. Дана стена и толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм), рабочая высота стены l₀ = 5 м. Определить минимальное количество арматуры у обеих граней стены.
1) Найдем площадь сечения бетона 1 погонного метра стены:
1∙0,175 = 0,175 м² = 1750 см²
2) Найдем в таблице 16 руководства минимальный процент армирования для стены, предварительно определив l₀/h = 5/0.2 = 25 > 24:
0,25%
3) Составим пропорцию:
1750 см² — 100%
Х – 0,25%
4) Из пропорции найдем искомую минимальную площадь арматуры:
Х = 0,25∙1750/100 = 4,38 см²
5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 12 мм, которые нужно установить у каждой грани на каждом погонном метре стены.
Заметьте, если бы стена была толще, минимальный процент армирования резко бы упал. Например, при толщине стены 210 мм потребовалось бы уже 5 стержней диаметром 10 мм, а не 12.
class=»eliadunit»>
Добавить комментарий
Минимальный процент армирования железобетонных конструкций
В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.
Формула процента армирования железобетонных конструкций – соотношение бетона
В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.
Разберемся, как вычисляется данный показатель согласно требованиям стандарта.
Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному процентуПроцент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:
- масса металлического каркаса делится на вес бетонного монолита;
- полученное в результате деления значение умножается на 100.
Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:
- при увеличении слоя бетона показатель армирования снижается;
- при использовании арматуры большого диаметра коэффициент возрастает.
Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.
Показатель армирования имеет предельные значения:
- минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
- максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.
Чтобы гарантировать надежность конструкций из железобетона, необходимо соблюдать требования строительных нормСоблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.
Минимальный процент армирования в конструкциях из железобетона
Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.
В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:
- при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
- минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
- для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.
При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.
Коэффициент армирования – предельное значение для монолитных фундаментов
Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.
Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкцийЭто приведет к негативным последствиям:
- ухудшению рабочих показателей конструкции;
- существенному увеличению веса изделий из железобетона.
Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.
Какова величина защитного слоя бетона
Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.
Его величина для несущих стен и железобетонных панелей составляет:
- 1,5 см – для плит толщиной более 10 см;
- 1 см – при толщине бетонных стен менее 10 см.
Размер защитного слоя для ребер усиления и ригелей немного выше:
- 2 см – при толщине бетонного массива более 25 см;
- 1,5 см – при толщине бетона меньше указанного значения.
Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.
Величина защитного слоя различается для различных видов фундаментных оснований и составляет:
- 3 см – для сборных фундаментных конструкций из сборного железобетона;
- 3,5 см – для монолитных основ, выполненных без цементной подушки;
- 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.
Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.
Заключение
Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.
pobetony.expert
Схема и расчет армирования монолитной плиты фундамента
18 Август 2017 Стройэксперт Главная страница » Фундамент » Монтаж Просмотров: 11086Армирование монолитной плиты
Важным этапом строительства дома является возведение фундамента. Эта основная часть принимает на себя нагрузки от подвижек грунта, от массива строения и других внешних факторов. Следовательно, фундамент должен быть достаточно прочным и надежным. Укрепить основание дома помогает армирование, то есть усиление металлическими арматурными прутьями.
С какой целью выполняют армирование плиты
Армирующий каркас является необходимым элементом фундаментной плиты. Однако многие строители пренебрегают этим этапом, считая, что бетон самостоятельно способен противостоять нагрузкам. Чтобы разобраться с вопросом, зачем нужно армирование фундамента, нужно знать, какие проблемы решает этот элемент. В частности речь идет о следующем:
- Армирующий каркас делает основание прочнее, что позволяет противостоять нагрузкам больше, чем плита из обычного цемента.
- Чистый бетон характеризуется высокой прочностью на сжатие, но плохо выдерживает изгибы. Металлические прутья не позволяют бетонной плите сгибаться от неравномерного давления. В результате снижается риск неравномерной усадки дома.
- Армирующий каркас не позволяет бетонной плите деформироваться в результате вспучивания и подвижек грунта. Кроме того усиленный фундамент не боится резкой смены температуры и грунтовых вод. Следовательно, можно сделать вывод, армирование увеличивает срок эксплуатации и основания, и всей постройки.
Создание армирующего каркаса регламентируется специальными документами, где указаны рекомендуемые правила и размеры арматуры.
к оглавлению ↑Армирование плитного фундамента
Армирование плиты
Армировать монолитную железобетонную плиту рекомендуется в зависимости от предполагаемой нагрузки, так как в некоторых местах она может быть значительной, например, под несущими стенами, колоннами или в углах.
к оглавлению ↑Схема армирования
Укладка арматуры выполняется в зависимости от толщины плиты. Если этот параметр не превышает 15 см, то армирование проводится в один слой. В противном случае усиливать монолитную плиту нужно посредством каркаса.
Каркас представляет собой сетку с ячейками, одинаковыми во всех направлениях. Причем для легких построек расстояние между прутками может составлять до 40 см, при возведении стен из кирпича или бетона расстояние уменьшается до 20 см.
В целом регламентируемый размер ячеек не должен превышать толщину плиты больше, чем в 1,5 раза.
В зонах продавливания, то есть под несущими стенами, размер ячейки уменьшается в 2 раза. Это делает каркас и основание более прочным и надежным.
к оглавлению ↑Расчет диаметра арматуры
Диаметр арматурных прутьев, которые используются для усиления фундаментной плиты, является очень важным параметром. Поэтому необходимо предварительно определить сечение прутьев арматуры.
Чтобы определить минимальный диаметр арматурных прутьев, следует воспользоваться определенной методикой:
- Рассчитывают сечение плиты, для этого длину умножают на высоту. Для примера можно взять 6 и 0,3 метра: 6*0,3=1,8.
- Вычисляют допустимую площадь сечения прута, для этого сечение плиты делят на минимальный процент армирования (согласно регламентируемым документам этот параметр равен 0,15%): 1,8:0,15=27.
- Определяют площадь арматуры в одном ряду:27:2=13,5.
- Вычисляют минимальное сечение, зная длину плиты и шаг между прутьями: 13,5:31=0,43.
Расчет диаметра прутьев
Узнать диаметр прутка по соответствующему сечению можно в ГОСТ 5781.
В целом опытные строители рекомендуют использовать следующие показатели: при длине основания менее 3 метров, можно использовать прутья диаметром 10 мм. В противном случае следует брать более толстые элементы, до 12 мм. Чаще всего строители используют арматурные прутья сечением 12-16 мм. Кроме того существует ограничение диаметра арматуры: он не может быть более 4 см.
к оглавлению ↑Расчет количества арматуры
Количество требуемой арматуры рассчитывается по достаточно простой схеме. К примеру, армирование будет выполняться для плиты размером 8*8 м.
Количество арматуры
- Принимая во внимание стандартный размер ячеек 0,2 м, определяют количество прутьев: 8:0,2=40.
- К этой цифре необходимо добавить еще один прут, в результате получается 41 пруток.
- Для получения сетки необходимы и перпендикулярные штыри, следовательно, полученный результат увеличивают вдвое: 41*2=82.
- Учитывая, что каркас состоит, как минимум, из двух слоев, удваиваем и это значение: 82*2=164.
- Таким образом, для армирования плиты 8*8 метров понадобится 164 прута.
- Однако в большинстве случаев арматурные прутья имеют стандартную длину, которая равна 6 метрам. Значит, необходимо вычислить общий метраж арматуры: 164*6=984 м.
- Количество вертикальных соединительных прутьев вычисляется аналогичным способом. Если учесть, что соединение выполняется в местах пересечения горизонтальных элементов, то можно получить следующее: 41*41=1681.
- Теперь следует определить длину соединительных стержней. Зная, что высота монолитной плиты составляет 20 см, а расстояние от каркаса до верхней и нижней части основания должно быть не меньше 5 см, определяют длину стержня: 20-5-5=10 см.
- Теперь можно определить общий метраж соединительных стержней: 1681*0,1=168,1 м.
- Суммируем все данные и получаем результат: 984+168,1=1152,1 м.
Если в магазине материал продают по весу, то можно определить и этот параметр. Средняя масса одного погонного метра прута составляет 0,66 кг. Следовательно, общий вес арматуры будет таким: 1152,1*0,66=760 кг.
Дополнительно о правилах выбора и расчета арматуры.
к оглавлению ↑Способы создания арматурного каркаса
Чтобы собрать армирующий каркас для фундаментной плиты, необходимо соединить между собой прутья арматуры. Для этой цели используют два варианта: соединение сваркой и вязкой.
Сварочный метод используется очень редко, хотя в этом случае на изготовление каркаса требуется меньшее количество времени и сил. Основным недостатком такого способа является жесткое и неподвижное соединение, что не очень хорошо сказывается на качественных характеристиках монолитной плиты. Кроме того в процессе сваривания происходит расплавление металла, следовательно снижаются прочностные свойства арматуры.
Соединение прутьев с помощью вязальной проволоки не имеет особой жесткости. Под действием бетонной массы может наблюдаться растяжение проволоки, но разрыва в месте соединения не произойдет. Еще одним преимуществом соединения с помощью проволоки можно назвать экономию электроэнергии, так как работы проводятся вручную без использования сварочного или другого электрооборудования.
Ранее у нас уже была статья, в которой подробно рассказывается о том, как вязать арматуру.
к оглавлению ↑Как избежать ошибок при создании армирующего каркаса
Ошибки могут совершаться на любом этапе строительства, армирование фундамента не является в этом случае исключением. Даже малейшие недочеты могут способствовать разрушению плитного основания или усложнить процесс бетонирования. Следовательно, необходимо подробнее узнать, какие ошибки совершаются на этапе армирования, чтобы полностью избежать их или свести к минимуму.
- Самой главной ошибкой при армировании фундаментной плиты можно назвать неправильные расчеты предполагаемой нагрузки на фундамент или их отсутствие. Ведь на основании этих данных выбираются размеры арматурных прутьев, определяется схема расположения арматуры.
- Прутья арматуры соединяются встык. Такой метод не может гарантировать прочности конструкции, поэтому рекомендуется соединять элементы внахлест, длина должна быть не меньше 15 диаметров.
- В процессе укладки армирующего каркаса прутья расположены в непосредственной близости к почве или воткнуты в нее. В результате пучения или подвижек грунта происходит врезание арматуры в грунт, что приводит к образованию коррозии на прутьях. Это явление снижает прочность каркаса и всего основания.
- Несоблюдение правил расположения прутков также может стать причиной разрушения плиты. Рекомендуемое расстояние между прутьями должно быть не более 40 см, а в некоторых ситуациях этот параметр снижается до 20 см.
- Если торцы арматуры не имеют защитного покрытия, то под воздействием влаги из бетонного раствора может образоваться коррозия элементов.
- Большое значение имеет правильное армирование под несущими стенами и в углах строения.
- Установка каркаса проводится не на фиксаторы, а на деревянные бруски или другие нестандартные элементы. Они не только нарушают целостность бетона, но и способствуют проникновения влаги к металлическим элементам.
Армирование фундаментной плиты
Армирование фундаментной плиты — это очень ответственный и сложный этап. Но при соблюдении правил и точном выполнении расчетов можно самостоятельно осуществить этот процесс.
stroykarecept.ru
Процент армирования железобетонных конструкций: минимальный, максимальный
С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.
Степень армирования
Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.
Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где
- М1 — вес стального каркаса;
- М2 — масса бетонного монолита.
Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.
Особенности расчетов
В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.
Значение армирования
Минимальный процент
Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.
Максимальный коэффициент арматуры
После заливки важно уплотнить бетон, чтобы не было воздуха возле решетки, который приводит к снижению прочности сооружения.Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.
Сохранение прочности
Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.
Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.
Защитный слой бетона
В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:
Наименование стройматериала | Ширина объекта, см | Слой бетона, см |
Несущая стена | Более 10 | 1,5 |
Стена | Менее 10 | 1 |
Ребро | 25 | 2 |
Балка | Менее 25 | 1,5 |
Колонна | 3 | |
Фундаментная балка |
Посмотреть «СНиП 2.03.01-84» или cкачать в PDF (4.8 MB)
Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.
znaybeton.ru
Калькулятор Армирование_Ленты_Онлайн v.1.0 — армирование ленточного фундамента
Калькулятор Армирование-Ленты-Онлайн v.1.0
Расчет продольной рабочей, конструктивной и поперечной арматуры для ленточного фундамента. Калькулятор основан на СП 52-101-2003 (СНиП 52-01-2003, СНиП 2.03.01-84), Пособие к СП 52-101-2003, Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предв. напряжения).
Результаты
Параметры проектируемого фундамента
Ширина фундамента, м:
Высота фундамента, м:
Сечение ленты, м2:
Общая длина ленты, м:
Объем фундамента, м3:
Расчет арматуры
Продольная рабочая арматура
Диаметр арматуры, мм:
Расчитанная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:
Подобранная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:
Количество стержней арматуры в верхнем (нижнем) поясе, шт:
Количество стержней арматуры на сечение ленты, шт:
Общая площадь сечения арматуры, мм2:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м3:
Продольная конструктивная арматура (противоусадочная)
Диаметр арматуры не менее (оптимально 12мм), мм:
Количество стержней арматуры на сечение ленты, шт:
Количество горизонтальных рядов:
Расстояние между рядами (шаг), мм:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м3:
Поперечная арматура (хомуты)
Диаметр арматуры, мм:
Расстояние между хомутами (шаг), мм:
Количество хомутов на ленту, шт:
Длина одного хомута (с учетом крюков), м:
Общая длина стержней, м:
Общая масса арматуры, кг:
Объем арматуры на ленту, м3:
Общая масса и объем арматуры на ленту
Масса арматуры, кг:
Объем арматуры на ленту, м3:
Алгоритм работы калькулятора
Конструктивное армирование
Если выбран данный пункт меню, калькулятор рассчитает минимальное содержание рабочей продольной арматуры для конструкции фундамента согласно СП 52-101-2003. Минимальный процент армирования для железобетонных изделий лежит в диапазоне 0.1-0.25% от площади сечения бетона, равной произведению ширины ленты на рабочую высоту ленты.
СП 52-101-2003 Пункт 8.3.4 (аналог Пособие к СП 52-101-2003 Пункт 5.11, Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.8)
Пособие к СП 52-101-2003 Пункт 5.11
В нашем случае минимальный процент армирования составит 0.1% для растянутой зоны. В связи с тем, что в ленточном фундаменте растянутой зоной может быть как верх ленты, так и низ, процент армирования составит 0.1% для верхнего пояса и 0.1% для нижнего пояса ленты.
Для продольной рабочей арматуры используются стержни диаметром 10-40мм. Для фундамента рекомендуется использовать стержни диаметром от 12мм.
Пособие к СП 52-101-2003 Пункт 5.17
Руководство по конструированию бетонных и ж/б изделий из тяжелого бетона пункт 3.11
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.27
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94
Расстояние между стержнями продольной рабочей арматуры
Пособие к СП 52-101-2003 Пункт 5.13 (СП 52-101-2003 Пункт 8.3.6)
Пособие к СП 52-101-2003 Пункт 5.14 (СП 52-101-2003 Пункт 8.3.7)
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.95
Конструктивная арматура (противоусадочная)
Согласно руководству по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (аналог Пособие к СП 52-101-2003 Пункт 5.16) для балок высотой более 700мм предусматривается конструктивная арматура по боковым поверхностям (2 прутка арматуры в одном горизонтальном ряду). Расстояние между стержнями конструктивной арматуры по высоте должно быть не более 400мм. Площадь сечения одной арматуры должна составлять не менее 0,1% от площади сечения, равной по высоте расстоянию между этими стержнями, по ширине половине ширины ленты, но не более 200мм.
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (Пособие к СП 52-101-2003 Пункт 5.16)
По расчету получается, что максимальный диаметр конструктивной арматуры составит 12мм. По калькулятору может получаться и меньше (8-10мм), но все же, чтобы иметь запас прочности лучше использовать арматуру диаметром 12мм.
Пример
Исходные данные:
- Размеры фундамента в плане: 10х10м (+одна несущая внутренняя стена )
- Ширина ленты: 0.4м (400мм)
- Высота ленты: 1м (1000мм)
- Защитный слой бетона: 50мм (выбран по умолчанию)
- Диаметр арматуры: 12мм
Расчет:
Рабочая высота сечения ленты [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр рабочей арматуры) = 1000 – (50 + 0.5 * 12) = 944 мм
Площадь сечения рабочей арматуры для нижнего (верхнего) пояса = (Ширина ленты * Рабочая высота сечения ленты) * 0.001 = (400 * 944) * 0.001 = 378 мм2
Подбираем кол-во стержней по СП 52-101-2003 приложения 1.
Сечение подбираем большее либо равное найденному сечению выше.
Получилось 4 стержня арматуры диаметром 12мм (4Ф12 А III) с площадью поперечного сечения 452мм.
Итак, мы нашли стержни для одного пояса нашей ленты (допустим нижнего). Для верхнего получится столько же. В итоге:
Кол-во стержней на нижний пояс ленты: 4
Кол-во стержней на верхний пояс ленты: 4
Общее кол-во продольных рабочих стержней: 8
Общее сечение продольной рабочей арматуры на ленту = Поперечное сечении одного стержня * Общее кол-во продольных стержней = 113.1 * 8 = 905мм2
Общая длина ленты = Длина фундамента * 3 + Ширина фундамента * 2 = 10 * 3 + 10 * 2 = 50м (47.6м в калькуляторе с учетом ширины ленты)
Общая длина стержней = Общая длина ленты * Общее кол-во продольных стержней = 47.6 * 8 = 400м = 381м
Общая масса арматуры = Масса одного метра арматуры (находим по таблице выше) * Общая длина стержней = 0.888 * 381 = 339кг
Объем арматуры на ленту = Сечение одной продольной арматуры * Общую длину стержней / 1000000 = 113.1 * 381 / 1000000 = 0.04м3
Расчетное армирование
Если выбран данный тип меню, то расчет продольной рабочей арматуры для растянутой зоны будет выполнен по формулам пособия к СП 52-101-2003.
В нашем случае растянутая арматура устанавливается сверху и снизу ленты, поэтому у нас будет рабочая арматура и в сжатой и в растянутой зоне.
Пример
Исходные данные:
- Ширина ленты: 0.4м
- Высота ленты: 1м
- Защитный слой бетона: 50мм
- Марка (класс) бетона: М250 | B20
- Диаметр арматуры: 12мм
- Класс арматуры: А400
- Макс. изгибающий момент в фундаменте: 70кНм
Расчет
Для нахождения Rb воспользуемся таблицей 2.2 пособия к СП 52-101-2003
Для нахождения Rs воспользуемся таблицей 2.6 пособия к СП 52-101-2003
Максимальный изгибающий момент [M] у нас был предварительно найден. Для его нахождения понадобится знать распределенную нагрузку от веса дома (включая фундамент). Для данных целей можно воспользоваться калькулятором: Вес-Дома-Онлайн v.1.0
Расчетная схема для нахождения изгибающего момента: балка на упругом основании.
Расчет для наглядности будем производить в [см].
Рабочая высота сечения [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр арматуры) = 100см – [5см + 0.6см] = 94.4см
Am = 700000кгс*см / [117кг/см2 * 40см * 94.4см * 94.4см] = 0.016
As = [117кгс/см2 * 40см * 94.4см] * [1 – кв. корень (1 – 2 * 0.016)] / 3650кгс/см2 = 2,06см2 = 206мм2
Теперь нам нужно сравнить площади сечения рабочей арматуры полученную по расчету и площадь сечения конструктивного армирования (0.1% от сечения ленты). Если площадь конструктивного армирования окажется больше расчетного, то принимается конструктивное, если нет то расчетное.
Площадь сечения растянутой арматуры при конструктивном армировании (0.1%): 378мм2
Площадь сечения растянутой арматуры при расчете: 250мм2
В итоге выбираем площадь сечения при конструктивном армировании.
Поперечное армирование (хомуты)
Поперечное армирование рассчитывается по данным пользователя.
Нормативы поперечного армирования
Пособие к СП 52-101-2003 Пункт 5.18
Пособие к СП 52-101-2003 Пункт 5.21
Пособие к СП 52-101-2003 Пункт 5.21
Пособие к СП 52-101-2003 Пункт 5.23
Пособие к СП 52-101-2003 Пункт 5.20
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.105
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.106
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.107
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.109
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.111
Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 2.14
Пособие к СП 52-101-2003 Пункт 5.24
Пособие к СП 52-101-2003 Пункт 5.22
Защитный слой бетона
Пособие к СП 52-101-2003 Пункт 5.6
Пособие к СП 52-101-2003 Пункт 5.8 (Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.4)
Полезное
Нормативная документация
СП 52-101-2003 Бетонные и жб конструкции без предв. напряжения арматуры
Пособие к СП 52-101-2003 по проектированию бетонные и жб конструкции без предв. напряжения арматуры
СНиП 2.03.01-84 Бетонные и железобетонные конструкции
Руководство по конструированию бетонных и жб конструкций из тяжелого бетона (без предв. напряжения)
Книги
Армирование элементов монолитных железобетонных зданий И.Н. Тихонов 2007г.
Строительные калькуляторы
www.gvozdem.ru
Определение эффективных параметров армирования железобетонных конструкций
Леонид Скорук
К.т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).
В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.
Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.
Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1й (прочность, устойчивость), так и по 2й группе (прогибы, ширина раскрытия трещин) предельных состояний.
В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).
При этом в действующих строительных нормах [13] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,050,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).
До какойто степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.
Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).
Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит
Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»
Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м3. При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.
Таблица 1. Факторы, которые влияют на расход бетона и арматуры
Фактор |
Следствие |
Инженерногеологические условия строительной площадки |
Тип фундамента (свайный, плитный, ленточный) |
Шаг сетки несущих вертикальных элементов |
Пролет плит, их толщина (жесткость) |
Размеры сечения колонн/пилонов/стен |
Удельный вес арматуры в бетоне |
Класс бетона и арматуры |
Расход арматуры в сечении |
Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.
При этом нужно помнить, что программа считает расход:
- арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 1520%;
- бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 510%).
Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.
Таблица 2. Содержание арматуры в бетоне для разных типов зданий
Тип здания |
Элемент здания |
Расход, кг/м3 |
а) 22этажное здание на сваях |
Сваи |
64 |
Фундаментная плита |
392 |
|
Вертикальные несущие элементы |
263 |
|
Плиты перекрытия |
193 |
|
Всего по зданию |
212 |
|
б) 10этажное здание на сваях |
Сваи |
70 |
Фундаментная плита |
223 |
|
Вертикальные несущие элементы |
148 |
|
Плиты перекрытия |
129 |
|
Всего по зданию |
148 |
|
в) 8, 9этажное здание на плите |
Фундаментная плита |
238 |
Вертикальные несущие элементы |
126 |
|
Плиты перекрытия |
150 |
|
Всего по зданию |
175 |
|
г) 2этажное здание на сваях |
Сваи |
83 |
Фундаментная плита |
179 |
|
Вертикальные несущие элементы |
118 |
|
Плиты перекрытия |
170 |
|
Всего по зданию |
147 |
В табл. 2 на различных типах реальных зданий и сооружений показано, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и т.д.
Более точно содержание арматуры в бетоне можно определить по формуле:
, где
Са — содержание арматуры в бетоне для всего здания, кг/м3;
Сэ — содержание арматуры в бетоне для отдельных конструктивных элементов (фундаментная плита, плиты перекрытия и т.д.), кг/м3;
Υ э — удельный вес бетона отдельных конструктивных элементов в общем объеме бетона здания, %;
n — общее количество конструктивных элементов здания.
Выводы
Всё вышесказанное дает основания утверждать, что содержание арматуры в бетоне (кг/м3)
для монолитных конструкций не является величиной постоянной и в большой степени зависит от меняющихся выходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки и многих других факторов.
Величина содержания арматуры в бетоне конструкций является сугубо индивидуальной характеристикой каждой конкретной конструкции и должна базироваться на соответствующих прочностных расчетах, быть следствием этих расчетов, а также отвечать конструктивным требованиям, предъявляемым к данному типу конструкции.
С помощью новых функций, реализованных в 21й версии программы SCAD++, появилась возможность на начальном этапе проектирования (стадия расчетной схемы) оперативно получить данные о расходе бетона и арматуры как для отдельного элемента, так и для всего здания в целом. На основании полученных данных проектировщик при необходимости принимает решение об изменении конструктивной схемы здания и оценивает, насколько эти изменения влияют на содержание арматуры в бетоне. В предыдущих версиях ПК SCAD такая задача тоже решалась, но гораздо более трудоемко, и при этом она требовала от проектировщика очень много времени на выполнение большого количества рутинных операций.
Литература:
- СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения (Актуализированная редакция СНиП 52012003).
- СП 521012003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры.
- Пособие по проектированию бетонных и железобетонных конструкций и тяжелого бетона без предварительного напряжения арматуры (к СП 521012003).
- ГЭСН 8102062001.
- ФЕР 060100117.
sapr.ru
Минимальный процент армирования фундамента своими руками
Содержание статьи:
Армирование – это процедура, позволяющая увеличить общую прочность несущей конструкции. Армирование предусмотрено в большинстве конструкций фундаментов, но в каждом из видов фундамента оно выполняется согласно определенным требованиям. В зависимости от расположения прутов арматуры армирование бывает вертикальное и горизонтальное.
Способы размещения арматуры
Самым распространенным типом является горизонтальное размещение арматуры. Такой вид армирования нивелирует неравномерные нагрузки на фундамент, которые возникают из-за разной несущей способности участков грунта, на котором заложен фундамент, из-за вспучивания грунта и т. п.
Вертикальное армирование чаще всего делается в дополнение к горизонтальному. Такая мера необходима в том случае, когда фундамент подвержен действию сильных горизонтальных нагрузок.
Минимальный процент армирования
Многих интересует такой показатель, как минимальный процент армирования фундамента. Но строгих указаний по этому поводу нет. Количество арматуры можно использовать по своему усмотрению, можно еще обратить внимание и на то, сколько арматуры в кубе бетона должно быть.
Этот коэффициент невозможно рассчитать еще и потому, что играют роль множество факторов: и тип фундамента, и тип грунта, и количество этажей здания, и прочность материалов фундамента, и многое другое. Поэтому минимальный процент армирования фундамента в каждом отдельном случае будет отличаться.
В некоторых случаях армирование фундамента вообще не требуется, но такое бывает редко. Без армирования можно обойтись в том случае, когда нагрузка распределяется на фундамент равномерно и отсутствуют места локального перегруза.
Но такое бывает редко, поэтому практически всегда приходится проводить армирование. Пренебрежение этой процедурой приводит к проседанию здания, появлению трещин в стенах и прочим неприятным последствиям.
Диаметр арматуры
Диаметр прутьев арматуры должен составлять не менее 10-12 мм. Сечение арматуры определяется при расчете нагрузки на фундамент. Установка прутьев арматуры и расчет, схема армирования должна производиться таким образом, чтобы расстояние между ними было равно 30 см, а расстояние до внутренней стороны фундамента – не меньше 5 см.
Ниже приведено видео с армированием ленточного фундамента.
dom-fundament.ru