Прочность газобетона: Прочность газобетона. Класс прочности по марке газоблока

Содержание

Прочность газобетона. Класс прочности по марке газоблока

Газобетон имеет характеристики легкого ячеистого строительного материала, обладающего довольно невысокой прочностью. Но при этом газобетонные блоки выдерживают нагрузку зданий, состоящих из нескольких этажей. Для строительства двухэтажного дома важно подобрать подходящую плотность, которая рассчитана на конкретный строительный проект.

При монтаже несущих стен специалисты рекомендуют использовать материал с плотностью от D300 до D700, но более востребован газобетон со средней плотностью D400 и D500, который имеет подходящий уровень прочности и степень теплоизоляции.

ГлавСтройБлок изготавливает газобетон высокого качества по новым технологиям, поддерживая однородность материала. Его класс прочности значительно выше, чем у бетона, полученного по старой технологии. Лучший материал, имеющий плотность D400, относится к классу B2.5. А более дешевый газобетон имеет только класс B1.5. Наличие класса B2.5 у газоблока говорит о том, что материал рассчитан на нагрузку в 25 кг или 2.5 Ньютона.

Марка газобетона

Класс

Массовый

Лучший

D300

B1,5

B2

D400

B2

B2,5

D500

B2,5

B3,5

D600

B3,5

B5

Завод-изготовитель гарантирует, что каждый газоблок имеет прочность, достаточную для возведения коттеджа в несколько этажей. Марку материала определяют среднестатистически по прочности, то есть по полученным при тестировании данным, когда оценивают блоки из одной партии. Степень прочности можно установить по среднему значению, и ниже она уже быть не может. Для присвоения класса прочности изделия необходимо узнать расчетное сопротивление несущих стен.

Марка газоблока

Класс прочности на сжатие

Средняя прочность (кг/см²)

D300 (300 кг/м³)

B0,75 — B1

10 — 15

D400

B1,5 — B2,5

25 -32

D500

B1,5 — B3,5

25 — 46

D600

B2 — B4

30 — 55

Несущие показатели стен будут меньше в 5 раз, чем фактическая прочность изделия на сжатие. Такие показатели будут зависеть от различных факторов, которые могут ухудшать характеристики кладки и уменьшать прочность по СНиП.

Главные показатели, которые влияют несущую способность: толщина и высота стены, оказываемая на нее нагрузка. Чем выше несущие стены, а кладка тоньше, тем большую погрешность может давать под воздействием нагрузки стена, что снижает несущую способность.


 


Прочность газобетона, класс прочности газобетонных блоков

Газобетон, относящийся к разряду ячеистых бетонов, считается одним из самых выгодных и экономичных строительных материалов. Он подходит для возведения внешних и несущих стен здания, закладки бетона, выстраивания перегородок, а армированные перемычки из газобетона востребованы во всех сферах строительства. Популярность этого типа материала обуславливается рядом преимуществ вроде долговечности, небольшого веса, легкости в монтаже, морозоустойчивости, огнеупорности и теплоизоляции. Газобетон не требует дополнительного ухода, а его стоимость располагает к приобретению вне зависимости от того, нужна покупка для частного или крупного строительства.

Одним из главных преимуществ материала является прочность газобетона, которая обуславливает его долговечность и износоустойчивость.


Прочность газобетона на сжатие

Ошибочное мнение о хрупкости изделий из газобетонного сырья возникает после ознакомления с его внешним видом и структурой. Наличие большого количества воздушных пузырей в газоблоке вызывает сомнения в прочности стен из газобетона. Несмотря на то, что изделия легко поддаются монтажу и обработке, они не расположены к быстрому разрушению.

Материал отлично сопротивляется процессу растяжения, а прочность газобетона на сжатие доказана большим числом экспериментов. Плотность материала на сжатие равна 35 кг/кв.м, что означает что он является идеальным вариантом для малоэтажного строительства.

Прочность газобетонных блоков обусловлена тем, что они имеют толстые стенки, по которым равномерно распределяется нагрузка в ходе строительства здания. Чтобы повысить долговечность здания, строители применяют горизонтальную кладку.

Для расчета методики создания качественного материала, который гарантирует строительство надежного здания, комфортного для проживания, существует определенная классификация, которой должны соответствовать производимые изделия. В ней учитывается и такой показатель как прочность. Класс прочности газобетона должен соответствовать требоаниям ГОСТ 10180, ГОСТ Р53231.

 

Показатели Нормативные сопротивления ячеистого бетона сжатию Rbn, растяжению Rbtn и срезу Rshn; расчетные сопротивления для предельных состояний второй группы Rb,ser, Rbt,ser и Rsh,ser при классе бетона по прочности на сжатие
Класс бетона по прочности на сжатие В1 В1,5 В2,0 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20
Сопротивлению осевому сжатию (призменная прочность) Rbnи Rb,ser 0,95 9,69 1,40 14,3 1,90 19,4 2,4 24,5 3,3 33,7 4,60 46,9 6,9 70,4 9,0 91,8 10,5 107 11,5 117 16,8 168,3
Сопротивление бетонов растяжению Rbtn и Rbt, ser 0,14 1,43 0,22 2,24 0,26 2,65 0,31 3,16 0,41 4,18 0,55 5,61 0,63 6,42 0,89 9,08 1,0 10,2 1,05 10,7 1,1 11,2
Сопротивление бетонов срезу Rshn, Rsh, ser 0,2 2,06 0,32 3,26 0,38 3,82 0,46 4,56 0,6 6,03 0,81 8,08 0,93 9,26 1,31 13,09 1,47 14,7 1,54 15,44 1,6 16,2

Примечания

1. Сверху указаны сопротивления в МПа, снизу – в кгс/см2
2. Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе)

 


От чего зависит прочность изделий?

Прочность газобетона для несущих стен зависит от нескольких факторов, в числе которых объемный вес, равномерность его структуры, а также от характеристик материалов, используемых в качестве сырья.

Прочность стен из газобетона может меняться в зависимости от высоты, а если блок обладает неравномерной структурой, следует ожидать разрушения периферийных слоев и ядра изделия. В случае с использованными в производстве материалами стоит говорить об их способности к поглощению влаги. Чем выше этот показатель, равно как и водоцементное отношение, тем ниже прочность изделия.

Выбирая материал для приобретения, помните, что различные марки газобетона обладают разными показателями прочности:

  • D600 располагает повышенными показателями прочности и теплоизоляции. Эта марка идеально подходит для кладки фасадов зданий.
  • D500 выбирают при планировании возведения высотных домов и коттеджей.
  • D400 показывает меньшую прочность, но актуален благодаря отличным теплоизоляционным качествам. Он подходит для строительства перегородок и улучшения теплоизоляции в доме.


Купить газобетонные блоки любого класса прочности можно на сайте компании УниверсалСнаб. Здесь вы найдете материалы высокого качества по выгодным ценам.

 

Прочность газобетона

К основным преимуществам газобетона следует отнести: хорошую морозостойкость и небольшую теплопроводность, а также достаточную прочность на изгиб и сжатие. Важной характеристикой рассматриваемого материала считается небольшая усадка.

Прочность газобетона к сжимающим усилиям зависит от его марки и может колебаться от 12 до 140 кгс/см2, блоки с плотностью 500 кг/м3 выдерживают нагрузку в 2,5 МПа, газобетон марки Д 600 – 3,2 МПа. Значение на этот показатель оказывает объёмный вес, а также качество и количество вяжущего вещества. Также прочность будет зависеть от равномерности структуры изделия. Если пузырьки в материале расположены неравномерно и имеют разные диаметры, то разрушения газоблока может происходить в два этапа: сначала разрушаются периферийные слои, а затем ядро, имеющее большую прочность. В подобных случаях проблематично определить прочность испытуемого материала, но она будет гораздо меньшей, чем у материала с равномерной структурой.

Следует заметить, что улучшенные прочностные показатели имеет газобетон автоклавного твердения. Такие материалы изготовляют в больших объёмных формах, что будет способствовать более равномерному распределению пор. Большое влияние на рассматриваемый показатель оказывает расход цемента. При увеличении веса изделий улучшаются прочностные показатели и увеличивается теплопроводность. Так, вес теплоизоляционных материалов может колебаться от 300 до 500 кг/м3, а плотность конструкционных изделий, применяемых для кладки несущих стен, начинается с 600 кг/м3.

А теперь рассмотрим зависимость прочности газобетона от типа твердения материала. Газобетон неавтоклавного твердения застывает и приобретает основные характеристики в естественных условиях, причём максимальная его прочность достигается через три месяца от даты его изготовления, 35% через неделю и половина прочности примерно через месяц.

Газобетон автоклавного типа твердения имеет гораздо лучшие прочностные показатели, причём получить подобную характеристику можно со сравнительно небольшим расходом вяжущего вещества. Объяснить такое явление достаточно просто и это связано с тем, что порошкообразные кремнеземистые добавки вступают в реакцию с известью и компонентами цемента, в результате чего образуется новое вещество со свойствами вяжущего.

Что касается прочности газобетонного блока на изгиб, то она находится в пределах от 25% до 33% такого же показателя материала, но на сжатие. 

Что такое плотность газобетона и на что она влияет? – ЖБИ России

При выборе и покупке газобетонных блоков к нам часто обращаются с вопросами, касающимися плотности материала и её связи с прочностными и теплотехническими характеристиками. Чтобы разобраться и дать аргументированный ответ, предлагаем рассмотреть структуру блоков и вспомнить физику.

Что такое газобетон?

Автоклавный газобетон, по сути, синтезированный камень, полученный в результате химической реакции, возникающей при взаимодействии газообразующего агента и остальных компонентов. Вследствие активного газообразования исходный объем смеси увеличивается в несколько раз, а в её структуре образуются мелкодисперсные полости. После её схватывания и отвердения получаются газобетонные блоки полостями-порами, имеющими твердую оболочку и наполненными воздухом, имеющим низкий коэффициент теплопроводности.

Теплопроводность газобетона

Плотность материала показывает, какая масса вещества содержится в занимаемом им объеме, и зависит от макроструктуры — чем меньше пустотность (объем ячеек), тем ниже её значение. Теплопроводность измеряется в количестве теплоты, проходящей через образец газобетона в единицу времени.

Показатели плотности и теплопроводности прямо пропорциональны друг другу. Материал с мелкопористой структурой содержит множество ячеек с небольшим объемом и количеством воздуха, поэтому пропускает больше тепла. Соответственно, газобетон D500 c плотностью 500 кг/м3 имеет теплопроводность выше, чем D400 с параметрами 400 кг/м3.

Прочность газобетона

Как и в случае с теплопроводностью, значения плотности и прочности находятся в прямой зависимости друг от друга. Объяснение лежит в буквальном смысле на поверхности.

Из курса физики, прочность — способность сопротивляться разрушению под внешним воздействием, предел которой определяется отношением величины приложенной силы к площади поперечного сечения. Следовательно, показатели плотности при её вычислении не учитываются.

Почему же тогда прочность газобетона D500 выше, чем D400? Причина опять в макроструктуре — чем меньше пористость материала и объем ячеек, тем выше плотность, больше поверхность контакта, сила сцепления частиц и сопротивление ударному разрушению.

Смотрите информацию о продукции в каталоге газобетонных блоков.

Характеристика плотности и прочности газобетонных блоков

Большое количество современных строительных фирм выбирают для постройки домов в качестве стенового материала всем известный и экологически безопасный стройматериал – газобетон. Он представляет собой блоки крупного формата, имеющие точную и четкую геометрию, а также уникальные характеристики. Главное свойство газобетона, которое дает ему преимущество над другими стеновыми материалами – это его плотность.

Производители же кроме предельной прочности и плотности ставят перед собой цель изготавливать теплые материалы с небольшой массой. Для достижения этих целей был разработан автоклавный газобетон, характеризующийся легкостью и отличной теплоизоляцией и прочностью.

Свойства и основные характеристики газосиликатных блоков

Газобетон по своей сути — пористый блок автоклавного твердения. Изготавливаются они из цемента, воды, кварцевого песка, извести (основные составляющие). Все эти компоненты перемешиваются и отправляются в автоклав. В автоклаве при взаимодействии алюминия и раствора щелочи происходит реакция, дающая эффект вспенивания компонентов. За счет вспенивания получается пористая структура.

Газобетон классифицируются на разные марки исходя из плотности, а плотность в свою очередь влияет на теплоизоляцию. Исходя из этого, можно разделить марки газосиликатных материалов на 3 категории:

  1. Теплоизоляционные – марки D300-D500;
  2. Конструкционно-теплоизоляционные – марки D500-D900;
  3. Конструкционные – марки D1000-D1200.

Газосиликатные блоки имеют массу достоинств, поэтому остановимся на каждом из них более детально.

Прочность

Прочность газосиликата включает в себя 2 особенности – объемную густоту и прочность на сжатие.

Объемная густота – самое ценное качество газобетона, отображающее его пропорцию к занимаемому им объему. Чем больше объемная густота, тем выше прочность. Газосиликатные блоки с меньшей объемной густотой обладают лучшей теплоизоляцией, но худшей звукоизоляцией. Газобетон подразделяют на марки именно по этой особенности. К примеру, газобетон марки Д500 и Д600 имеют плотность 500 кг/м³ и 600 кг/м³ соответственно.

Прочность на сжатие находится в прямо пропорциональной зависимости от объемной густоты. Так прочность на сжатие газобетона марки Д500 – 3,2 МПа.

Легкость обработки

Никто не станет спорить с тем, что газосиликатные блоки легко обрабатываются. С помощью обычных ручных инструментов их можно легко нарезать или распилить на нужные размеры и формы, а это просто замечательно для постройки дизайнерских частных домов, где нет привязки к размерам и стереотипам. Но не стоит забывать, что чем выше плотность, тем сложнее его обрабатывать!

Теплоизоляционные характеристики

Сравнивая стеновые материалы можно сказать, что газосиликат имеет самую низкую теплопроводность. Газобетон марки D 500-D 600 относится к конструкционно-теплоизоляционным материалам с очень низкой теплопроводностью, что обеспечивает зимой отличную тепловую защиту домов. К тому же, строения из газосиликата не перегреваются летом.

Звукоизоляционные характеристики

Звукоизоляция газосиликата зависит, в большей степени, от марки материла, толщины стен и густоты раствора и лишь небольшое влияние на гашение звуков оказывает технология кладки. Эта характеристика важна для любого здания, потому что для здоровья людей должны соблюдаться определенные акустические условия. Разработаны специальные нормативы и индексы изоляции шума, измеряющиеся в децибелах и приведенные в таблице. Индексы разнятся в зависимости от марок газобетона.

Таблица индекса изоляции шума в зависимости от марок газобетона
 МаркаТолщина стены или ограждения (мм)
120180240300360
Индекс изоляции шума (дБ)
D5003641444648
D6003843464850

Огнестойкость

Газобетонная несущая стена, способность которой состоит в нераспространени и огня, имеет наивысшую степень огнестойкости – 1 и 2. Благодаря негорючести и высокой степени огнестойкости газосиликата огонь не может быстро распространяться по помещениям.

Экологичность и антиаллергенность

Газобетонные материалы не выделяют токсинов и идентичны натуральным – это проверенно лабораторным путем. Кроме того, даже при высоких температурах и влажности развитие плесени, грибков и бактерий не происходит, а значит нет дополнительных затрат на антисептики.

Нюансы использования газосиликатных блоков с различной плотностью

Изготовление газосиликата возможно только на крупных заводах. Газобетон набирает плотность 300-1200D в автоклаве и для этого работники завода следят за одновременным выполнением десятка процессов и добавляют определенные элементы в нужных пропорциях.

В свою очередь застройщики не участвуют в этих процессах, но абсолютно уверены в качестве и заявленных характеристиках изделий, потому что производители предоставляют нужные сертификаты. Для осуществления стройки нет необходимости арендовать спецтехнику для транспортировки блоков по стройплощадке, ведь довольно легкие. Если сравнивать с кирпичом, то постройка коробки и внутренних стен займет меньше времени и сил работников.

Отличительной особенностью газосиликата являются точные размеры. Погрешность изделий, выполненных на германских современных производственных линиях, составляет менее 1 мм. Для строительства это чрезвычайно удобно по нескольким причинам. Во-первых, междублочные швы будут минимальными, а это отлично повлияет на теплоизоляцию. Во-вторых, облицовочные работы будут менее затратными в силу того, что слой штукатурки для выравнивания будет незначительным. В-третьих, кладка может осуществляться на специальный клей, что придаст ей монолитность. Также, при правильной кладе, облицовочную плитку можно наносить на стену исключая слой штукатурки.

Производители стараются изготавливать газобетон всех плотностей. Поэтому мастерам стройки нужно только определиться с нужным типом блоков. Делать выбор нужно исходя из того, какой конструктивный элемент здания будет строиться. Как ранее указывалось, газосиликатные блоки имеют плотность (D) 300-1200 кг/м³ и поэтому могут использоваться для самых разных случаев.

Блоки с наименьшей плотностью (300-400 кг/м³) применяются в качестве утеплителя, но ни в коем случае не используются для постройки несущих стен. А для последних строители чаще всего пользуются плотностью 400-600 кг/м³. Причем из блоков плотностью 500-600 кг/м³ можно выстроить не более 3-х этажей, а для более высоких строений нужно использовать большую плотность.

Высокая плотность означает низкую теплоизоляцию, так как более плотный газобетон по свойствам схож с обычным бетоном, а значит, является холодным и плохо пропускает воздух.

К тому же стоит помнить, что плотная монолитная стена имеет большую массу и нуждается в хорошем фундаменте. Следовательно, для строительства частных домов используют блоки с плотностью 400-500 кг/м³. Это идеальный вариант прочности и массы.

Крупные заводы-производи тели в последние годы стали выпускать различные армированные газобетонные изделия. Стоимость их дороже привычных бетонных конструкций, однако, несущие стены не нуждаются в большой толщине.

Таблица характеристик и плотности самых ходовых марок газосиликата
ПлотностьD500D600
Категория прочности, МПа2,43,2
Максимальная плотность, кг/м³550650
Уплотнение при высыхании, мм/м0,270,26
Категория морозостойкости15F25F
Степень негорючестин/гн/г
Теплоизоляция при сухом состоянии, Ватт/мК0,110,13
Теплоизоляция при 4% влажности, Ватт/мК0,120,14
Теплоизоляция при 6% влажности, Ватт/мК0,130,15

В завершении хотелось бы отметить, что газобетон – это отличный стройматериал, способность которого сохранять тепло и не пропускать звук, очень велика. Применяться он может для разных целей и в любых климатических условиях. Он отлично подходит для строительства, как малоэтажных зданий, так и высоток. А реконструкция старых построек и утепление фасадов – лучший бюджетный вариант.

Газобетон Стоунлайт, прочность газобетонных блоков

ЧТО ТАКОЕ КЛАСС ПРОЧНОСТИ ГАЗОБЕТОНА?

Очень многие путают плотность газобетона и его прочность. На самом деле это две абсолютно разных характеристики. Для производства газобетона завод сначала готовит специальную газобетонную смесь, похожую на кашицу, которая потом вспенивается и застывает, насыщаясь кислородом.

Логично предположить, что для приготовления некоторого объема жидкой смеси необходимо смешать некоторое количество килограмм составляющих, таких как песок, цемент, известь и т.д. Так вот плотность газобетона это по сути ответ на вопрос: сколько килограмм газобетонной смеси пошло на изготовление одного куба?

В зависимости от степени насыщения готового блока воздухом будут меняться физические размеры пузырьков воздуха. Если размеры пузырьков большие, то их в готовом изделии будет меньше, а если пузырьки маленькие, то в один куб готового газоблока их можно вместить больше.

Каждый воздушный пузырек имеет твердую оболочку. И такая характеристика, как класс прочности характеризует непосредственно прочность твердой оболочки воздушного пузырька.

Таким образом плотность и класс прочности это две абсолютно-разные величины, однако они очень тесно между собой связаны. Чтобы более понятно объяснить вам этот принципиальный вопрос мы написали специальную статью: Отличие газобетона плотностью Д400 от Д500, прочитав которую вы сразу все поймете.

Так как эта страница посвящена прочностным характеристикам газобетонных блоков определенного производителя, то мы предположим, что вы прочитали вышеуказанную статью и понимаете суть понятия «прочность».

ПРОЧНОСТЬ ГАЗОБЕТОНА СТОУНЛАЙТ

Газобетонные блоки СТОУНЛАЙТ характеризуются великолепными показателями по прочности на сжатие. Достигается это не только высоким качеством используемого для производства

 

сырья, но и очень высокой технологической дисциплиной на предприятии. Каждая партия блоков проходит самые тщательные испытания в специальной заводской лаборатории. Блоки с плотностью Д400 и Д500 выполняются с классом прочности на сжатие минимум B2 т.е. 2,9 МПа (29кгс/см2). Основная же масса блоков выпускается с классом прочности В2,5. Следует отметить, что завод Стоунлайт является первым в Украине, который начал выпуск блоков плотности Д400 с классом прочности В2,5.

О чем это говорит?

Если вы возьмете блок размером 200х300х600мм, при этом 200мм будет его высотой, а площадь которая несет нагрузку будет ограничена размером 300 х 600 мм (30смХ60см), то нагрузку которую будет способен выдержать 1 такой блок можно рассчитать следующим образом: (30см х 60см)*29 кгс/см2= 52.200кг Много это или мало? Для сравнения блок с верхней площадью 40см х 60см несет нагрузку около 90 тонн при классе материала B2,5 (36кгс/см2)!

90 ТОНН — ЭТО ВЗЛЕТНАЯ МАССА САМОЛЕТА ТУ-154!

Если говорить о рассчетах конструкций — в любом случае, нагрузки и их рассчетные значения должен оценивать проектировщик руководствуясь значениями полученными при проведении испытаний профильными НИИ. Продукция марки СТОУНЛАЙТ тм сертифицирована, и мы с радостью предоставим Вам все необходимые данные для проведения проектных изысканий.

МОЖНО ЛИ НА ГАЗОБЛОК СТОУНЛАЙТ ЛОЖИТЬ ПЛИТЫ ПЕРЕКРЫТИЯ?

Да, плиты перекрытия на газобетон Стоунлайт ложить можно. Но делать это следует очень аккуратно.

Несмотря на то, что газобетон это невероятно прочный материал — суть его прочности заключается в распределении нагрузки. Возьмем пример обычного веника и человеческую руку. Уприте торец веника себе в ладонь сильно-сильно. Вы навряд ли почуствуете боль. А вот если вы выдерните из веника один пруток и упрете его себе в руку с силой? Вы можете получить сильную рану. Таким образом нагрузка бывает точечной (один прут) и распределенной (весь веник целиком).

Если предположить, что ваши строители уложат плиту идеально ровно — то блок поврежден не будет. Однако, на практике, кран не может поднять плиту таким образом, чтобы она была идеально параллельна газобетонной кладке. Обязательно какой то угол плиты будет опущен вниз, и в момент непосредственной укладки плиты этот злосчастный угол превратится в невероятную точечную нагрузку, которая имеет все шансы повредить вам стену.

Поэтому мы рекомендуем ложить плиты на твердый материал, который не боится точечных нагрузок. Таким материалом является либо кирпичная либо бетонная стяжка. Недостатком этих твердых оснований является их высокая теплопроводность, поэтому если толщину стяжки сделать равной толщине кладки она обязательно превратится в невероятный мостик холода.

Для исключения мостика холода, который может образоваться мы не советуем заливать бетон по всей толщине стены, а выполнить свою конструкцию по любому из ниже приведенных примеров на картинках:

Вариант А

Подготовка бетонной стяжки под плиту перекрытия. На рисунке виден метод утепления стяжки непосредственно газобетоном. Сама плита впоследствии также снаружи закрывается газобетонными блоками и конструкция находится как бы в теплоизоляционном дышащем коконе.

Вариант Б

Тут представлен вариант утепления конструкции плиты перекрытия (или монолитного перекрытия) газобетоном в комплексе с экструдированным пенополистиролом.

Вариант В

Тут представлена схема укладки плит на бетонную стяжку и схема утепления конструкции базальтовой минеральной ватой. Следует отметить, что мы рекомендуем использовать именно такую конструкцию. Для заливки бетонной стяжки были использованы специальные лотковые блоки Стоунлайт.

 

ПРОПЛАТИТЕ ГАЗОБЕТОН СТОУНЛАЙТ СЕГОДНЯ!
                                                     И МЫ ЗАФИКСИРУЕМ ВАМ ЦЕНУ НА ПОЛГОДА!

АКЦИОННАЯ ЦЕНА ОТ 565грн/куб до 10 ФЕВРАЛЯ 2014!
ЗВОНИТЕ 067-549-71-66

 

Газобетон Стоунлайт, цена на газоблок Стоунлайт, купить газоблок Стоунлайт в Киеве — средняя оценка 4.5 из 5 . Всего 151 голос.

Прочность газобетонных блоков. Легко ли ломается газобетон.

Прочность газобетонных блоков

Posted By: YanaShi 09.03.2020

Не так давно мы решили построить дом из газобетона для нашей семьи своими руками. Уже был сделан свайно-ростверковый фундамент и возведены наружные и внутренние стены первого этажа дома. Так что у нас уже сложилось своё собственное мнение о газобетонных блоках. Кстати говоря, для понимания — используем мы блоки Ytong (Ютонг). И именно о них сегодня пойдет речь.

В нашем простом эксперименте мы решили проверить прочность газобетонных блоков. Женской силы, для того чтобы разбить блок кувалдой, не хватило. Мужская рука разбила блок при помощи кувалды с легкостью. С учетом того, что блок лежал на камнях, — это было не так сложно… После этого небольшого эксперимента  и, что самое главное, основываясь на нашем личном строительном опыте хочется подвести итог и написать маленький отзыв про строительство частного дома из газобетона.

  1. Дом из газобетона Ytong

    Много кто слышал, что газобетонные блоки Ytong отличаются  своими точными размерами, заявленными производителем. Готовы это подтвердить, но все-таки бывают небольшие расхождения и это факт.
  2.  Газобетон достаточно хрупкий материал и очень легко в процессе работы отбить у блока углы или края. Например, блок 75 мм достаточно просто разбить обычной киянкой при усадке блока на раствор. При неудачном ударе появляется трещина и блок раскалывается. Но при этом на сжатие газобетон показывает себя с лучшей стороны. 
  3. Дома из газобетона теплые. Не удивляйтесь, но эту статью мы пишем с огромным опозданием, когда уже в доме прожили первую зиму. Для внешних стен мы использовали блоки 375 мм.  Дом из газобетона без утеплителя показал себя на отлично, хотя и зима была на этот раз не из суровых. Газобетон действительно удерживает тепло. А вот летом в домах из газобетона совсем не жарко. Это удивительное и приятное отличие данного материала. 

Пока что это всё, что бы мы хотели рассказать про данный материал для строительства дома. Дальше больше…

А если хотите оценить результаты нашего маленького эксперимента с газобетоном, то предлагаем Вашему вниманию видео с личного ютуб-канала «Всё своими руками». Пишите комментарии, делитесь своим мнением!

С наилучшими пожеланиями,

Яна и Женя Шигоревы.

 

 

 

Прочность на сжатие газобетона.

Контекст 1

… образцы были испытаны на физико-механические свойства, а именно на объемную плотность в высушенном состоянии, прочность на сжатие и теплопроводность. Эти свойства визуализированы на следующих рисунках. Сравнение насыпной плотности газобетона (рис.1) показывает уменьшение насыпной плотности в образцах, содержащих 13% зольную добавку FBC. Эта тенденция явно положительна для газобетона, поскольку насыпная плотность связана с теплоизоляционными свойствами материала.Через 2 года произошло небольшое увеличение насыпной плотности. Причину следует искать в микроструктуре газобетона и будет обсуждаться позже. Примесь золы FBC также оказала влияние на снижение прочности на сжатие (рис. 2). Это явление можно объяснить качеством золы от сжигания жидкого угля, особенно в отношении содержания SiO 2, а также его формы. Летучая зола из обычных порошковых слоев состоит на 80-95% из аморфных алюмосиликатов, тогда как зола FBC содержит в основном минеральные фазы.Таким образом, можно предположить, что SiO 2, содержащийся в золе FBC, будет менее реактивным, что было подтверждено с учетом механических свойств бетона. После 2 лет хранения у большинства образцов наблюдается небольшое снижение прочности на сжатие. Однако влияния зольной добавки FBC на прочность при сжатии после 2 лет хранения не наблюдалось. Зола FBC явно оказывает положительное влияние на теплопроводность согласно результатам, представленным на рис. 3. Как упоминалось выше, это связано в основном с более низкой насыпной плотностью газобетона, содержащего золу FBC.После 2 лет хранения коэффициент теплопроводности практически не изменился. После определения физико-механических свойств была проанализирована микроструктура образцов. На следующих рисунках представлены рентгеновские дифрактограммы газобетона после 2 лет хранения (рис. 4, 5) и СЭМ-изображения образцов (рис. 6, рис. 7). Рентгеновские дифрактограммы показывают, что образцы состоят в основном из тоберморита. Также присутствует некоторое содержание катоита (Ca 3 Al 2 (SiO 4) (OH) 8).Когда летучая зола используется в качестве силикатного компонента в ячеистом бетоне, в системе образуются CaO-Al 2 O 3 SiO 2 -H 2 O кальций-алюминат-силикат-гидраты, к которым также относится упомянутый выше катоит. Образование этого минерала во время гидротермальной реакции желательно, поскольку тоберморит также кристаллизуется из раствора растворенных ионов катоита на более поздних стадиях гидротермальной реакции. Формулы также показывают значительное содержание эттрингита, который вторично образовался в течение 2 лет хранения и является продуктом сульфатирования.Также присутствует кальцит, который указывает на карбонизацию газобетона. Присутствие этих минералов также может объяснить небольшое снижение прочности и увеличение насыпной плотности за 2 года. Сравнение рентгеновских дифактограмм образцов на основе высокотемпературной летучей золы и образцов, содержащих золу FBC, показывает, что использование золы FBC приводит к снижению интенсивности пика тоберморита. Сравнение химического состава золы (таблица 2) показывает значительную разницу в содержании SiO 2, примерно на 2%.10%. Важным фактором является также характер SiO 2 в золе, который аморфен в высокотемпературной золе и, следовательно, обладает высокой реакционной способностью. Можно предположить, что SiO 2, содержащийся в золе FBC, мало реакционноспособен и не вносит полного вклада в образование фаз CSH. Изображения, полученные с помощью SEM-микроскопа, показывают, что все образцы имеют микроструктуру хорошего качества, образованную в основном хорошо развитыми игольчатыми кристаллами тоберморита, которые хорошо сцеплены и образуют прочный каркас из пенобетона.Некоторые неиспользованные зерна летучей золы и, в небольшой степени, катоита наблюдались в бетоне без примеси золы FBC (рис. 6). Однако изометрические кристаллы катоита в основном присутствовали в бетоне с добавкой 13% золы FBC (рис. 7). На СЭМ-изображении этого газобетона также были обнаружены кристаллы кальцита, которые растут из места, покрытого тоберморитом. Таким образом, можно предположить наступление карбонизации бетона. Анализ микроструктуры зольного газобетона позволил сделать вывод о том, что в образцах могут наблюдаться признаки карбонизации и сульфатирования после 2 лет хранения в закрытом помещении с переменным температурно-влажностным режимом.В частности, это проявилось в наличии в бетоне эттрингита и кальцита. Присутствие этих минералов в равной степени наблюдалось в обоих типах газобетона (сделанном с использованием высокотемпературной летучей золы и 13% золы FBC). Микроструктура этих двух газобетонов различалась в основном содержанием тоберморита. Было обнаружено, что добавление золы FBC отрицательно влияет на образование этого минерала. Результаты анализа микроструктуры были подтверждены при определении физико-механических свойств бетона.За 2 года хранения почти у всех образцов произошло небольшое увеличение насыпной плотности и снижение прочности на сжатие. Теплопроводность осталась неизменной. Примесь золы FBC положительно повлияла на насыпную плотность, т.е. уменьшилась. Прочность на сжатие тоже, что, однако, отрицательно …

Пористость и механическая прочность автоклавного глинистого ячеистого бетона

В этой статье исследуются пористость и механическая прочность автоклавного глинистого ячеистого бетона (ACCC) со связующим. произведено из 75 мас.% каолинитовой глины и 25 мас.% портландцемента.В качестве вспенивателя использовали алюминиевый порошок от 0,2 до 0,8 мас.%, Получая образцы с различной пористостью. Результаты показывают, что образцы с более высоким содержанием алюминия продемонстрировали слияние пор, что может объяснить более низкую пористость этих образцов. Пористость, полученная с использованием использованного в исследовании содержания алюминия, была высокой (около 80%), что объясняет низкую механическую прочность исследованных ячеистых бетонов (максимум 0,62 МПа). Тем не менее, сравнивая результаты, полученные в этом исследовании, с результатами для низкотемпературного глинистого газобетона аналогичного состава, можно заметить, что автоклавирование эффективно для повышения механической прочности материала.

1. Введение

Ячеистый бетон — это затвердевший раствор портландцемента, который перед схватыванием был аэрирован для получения однородной пустотной или ячеистой структуры, содержащей 50–80 об.% Или более пузырьков воздуха, пустот и капиллярной пористости [1 ]. Тепловая и акустическая изоляция и огнестойкость — вот некоторые из свойств, которые делают ячеистый бетон очень интересным материалом для применения в строительстве [2–4].

Есть много возможных способов производства ячеистого бетона.Различные композиции вместе с различными методами отверждения могут использоваться для получения различных конечных свойств, таких как плотность, механическая прочность, термическая и акустическая проводимость [1].

Конечные свойства ячеистого бетона во многом зависят от его пористости, которую можно изменить, изменив тип и состав пенообразователя. Очень пористый материал будет иметь отличные тепло- и звукоизоляционные свойства из-за большого количества увлеченного воздуха. Однако эти свойства достигаются в ущерб механической прочности, которая уменьшается с увеличением объема пор.Таким образом, определение пористости и ее влияние на механическую прочность ячеистого бетона является очень важным фактором, который необходимо анализировать при производстве этого вида материала.

Некоторые исследования [5] показывают, что при той же пористости и составе механическая прочность ячеистого бетона может быть увеличена путем изменения метода твердения. Автоклавный пенобетон (AAC), то есть отвержденный под давлением пара при температурах между и обычно имеет более высокую прочность на сжатие, чем бетон неавтоклавного пенобетона (NAAC) влажного отверждения при комнатной температуре.Кроме того, во время автоклавирования материал достигает своей окончательной микроструктуры, в то время как NAAC претерпевает микроструктурные изменения со временем и, как следствие, медленные и постепенные изменения своей механической прочности [5].

Состав ячеистого бетона на каолинитовой глинистой основе был исследован Goual et al. [6–8]. В их исследованиях Clayey Cellular Concrete (CCC), как его называли, отверждался во влажной среде при относительной влажности 90%. Поскольку реакции между каолинитом и портландцементом очень медленные при комнатной температуре, этому материалу могут потребоваться месяцы, прежде чем будет достигнута его окончательная механическая прочность.Нововведение, предложенное в этой статье, связано с использованием автоклава для улучшения свойств материала этого типа ячеистого бетона.

Это исследование направлено, в частности, на изучение пористости и механической прочности автоклавного глинистого ячеистого бетона (ACCC) и сравнение результатов с результатами, представленными CCC с аналогичными составами, о которых сообщается в литературе.

2. Экспериментальная
2.1. Материалы

Используемая глина состояла на 98,3% из каолинита (Caulina Minérios, Бразилия), а цемент представлял собой стандартный портландцемент с высокой начальной прочностью (CP V-ARI-RS, Votorantim, Бразилия).Алюминиевый порошок представлял собой Stanlux Flake CL 4010 (Aldoro, Бразилия) со средним размером частиц 16 мкм. Для повышения удобоукладываемости глиняно-цементного теста был использован суперпластификатор на основе поликарбоксилата (Glenium 51, BASF, Германия) (32 мас.% Сухого вещества).

2.2. Композиции

Автоклавный глинистый ячеистый бетон (ACCC) получали путем аэрации водной пасты каолинитовой глины и портландцемента с использованием алюминиевого порошка в качестве пенообразователя. Алюминиевый порошок реагирует с раствором каустика, который выделяется во время реакции гидратации, с образованием пузырьков газообразного водорода [7].В конце процесса вспенивания водород улетучивается в атмосферу и замещается воздухом, который удерживается в виде пузырьков в пасте, становясь сферическими порами после полного схватывания цемента, создавая ячеистую структуру [6].

Были проанализированы четыре состава, различающиеся количеством используемого алюминиевого порошка. Количества, рассчитанные в пересчете на массовые проценты сухих глино-цементных материалов, были следующими: 75 мас.% Глины, 25 мас.% Цемента, 65 мас.% Воды и суперпластификатор на основе поликарбоксилата (0.8 мас.%, Массовый процент твердых веществ по отношению к сухим материалам), к которому добавляли от 0,2 мас.% До 0,8 мас.% Алюминиевого порошка с шагом 0,2%. Образцы в этом исследовании были обозначены как A2 для 0,2, A4 для 0,4, A6 для 0,6 и A8 для 0,8 мас.% Алюминия.

2.3. Подготовка образцов

В этом эксперименте глина и цемент были смешаны в сухом состоянии в смесителе с планетарной осью на низкой скорости в течение 2 минут. Затем постепенно добавляли воду, продолжая перемешивание на низкой скорости еще 2 минуты.Сделали короткую остановку на 1,5 минуты при перемешивании, чтобы соскоблить материал, прилипший к стенкам емкости для смешивания. Затем смесь гомогенизировали на низкой скорости в течение 1 минуты, а затем в течение 2 минут на высокой скорости. Суперпластификатор добавляли при остановленном смесителе в течение 30 секунд. После добавления этой добавки пасту перемешивали на низкой скорости в течение 1 минуты и затем останавливали еще на 30 секунд для добавления алюминиевого порошка, который смешивали и гомогенизировали с пастой в течение 1 минуты на низкой скорости.

Восемь образцов каждой смеси были отлиты в цилиндрические (50 100 мм 3 ) металлические формы, предварительно смазанные маслом для облегчения извлечения из формы. Через шестнадцать часов после формования лишние расширенные части были отрезаны. Через 48 часов образцы вынимали из форм и выдерживали во влажном помещении при относительной влажности 25 и 90% в течение 2 дней, а затем автоклавировали при 12 атм в течение 10 часов. Перед началом экспериментов образцы сушили в сушильном шкафу при температуре 70 ° C до достижения постоянного веса.

Микроструктуру и фазы ACCC сравнивали с микроструктурой и фазами низкотемпературного глинистого ячеистого бетона, отвержденного при температуре окружающей среды во влажном помещении при относительной влажности 25 и 90% в течение 21 дня.

2.4. Плотность, пористость и механическая прочность

Относительная плотность ячеистого бетона соответствует отношению между кажущейся плотностью (геометрически измеренной) ячеистого материала и плотностью твердого вещества, составляющего матрицу этого ячеистого материала [9 ]: Пористость определяется по [9]

Для измерения образцов ACCC диски размером приблизительно 50 15 мм 3 были вырезаны из центра по 2 образца каждого состава.Затем были измерены их масса и относительные размеры для расчета объема, при этом кажущаяся плотность была определена по формуле (3). где определяется геометрической формулой для расчета цилиндрического объема.

Для измерения использовался гелиевый пикнометр (Multipycnometer, QuantaChrome, США). Для этого анализа были измельчены репрезентативные образцы каждого состава. Для измерения использовали примерно 4 г порошка каждой композиции. Для каждого образца порошка было выполнено в общей сложности 10 измерений, что являлось окончательным значением, полученным как среднее арифметическое.

Для определения механической прочности образцов пять цилиндрических образцов (50 100 мм 3 ) каждого состава были испытаны на универсальной машине для механических испытаний (DL 20000, Emic, Brazil) в соответствии с бразильским стандартом. [10]. Базовые поверхности образцов были покрыты штукатуркой Paris для получения плоских и параллельных поверхностей. Используемая скорость нагрузки составляла 1 мм / мин.

2,5. Микроструктура и фазовый анализ

Продукты в этой работе были охарактеризованы с помощью рентгеновской дифрактометрии (XRD, Phillips, модель Xpert, Нидерланды) и сканирующей электронной микроскопии (SEM, Phillips, Нидерланды).

3. Результаты и обсуждение
3.1. Плотность и пористость

На рис. 1 показаны кажущаяся плотность и пористость проанализированных образцов ACCC в зависимости от процентного содержания порошка Al. Как можно заметить, плотность не изменилась, как и ожидалось для разных количеств Al. Как правило, плотность ячеистого бетона уменьшается с увеличением процентного содержания пенообразователя из-за большего количества образующихся пор. Однако в данном случае такое поведение как раз наблюдалось для образцов с 0.2 и 0,4 мас.% Al. Для образцов с большим количеством порошка Al плотность увеличивалась. Такое же аномальное поведение было отмечено для пористости образцов ACCC. Пористость увеличилась между образцами А2 и А4, но впоследствии она уменьшилась для образцов А6 и А8, достигнув более высокого значения в образце А4 (83,2%).


Анализ изломов поверхностей образцов ACCC показал, что смеси A6 и A8 имели поры неоднородной формы, которые были больше, чем наблюдаемые для смесей A2 и A4, что свидетельствует о слиянии пор смесей с более высоким содержанием Al.Это могло объяснить неожиданные результаты по плотности и пористости. На рисунках 2 (а) и 2 (б) показана поверхность излома образцов А2 и А8 соответственно.

Когда поры соединяются вместе, они приобретают больший объем и имеют тенденцию выходить из материала [1] из-за более сильных сил, оказываемых на них жидкостью (плавучесть, оказываемая цементной пастой на пузырьки газа). Таким образом, часть газа, образующегося во время реакции между Al и гидроксидами, не эффективна для образования пор, что приводит к более низкой пористости образцов A6 и A8.

Фактором, который может объяснить слияние пор этих образцов, является высокая реакционная способность порошка алюминия, использованного в данном исследовании. Как показано на Рисунке 1, 0,2 мас.% Al уже было достаточно для получения пористости 81,8%. Когда было добавлено более высокое содержание Al, количество образовавшихся пузырьков водорода могло быть настолько большим, что для них было более стабильно слипаться, чем оставаться изолированными. Коалесценция обеспечивает минимизацию общей площади поверхности пор, что приводит к более стабильной конфигурации системы [11].

Возможные решения этой проблемы заключаются в минимизации количества суперпластификатора, используемого для увеличения вязкости цементирующей пасты, чтобы задержать выход пузырьков водорода, и в оптимизации количества используемой энергии Al (Stanlux Flake CL4010), поскольку меньшего количества этого порошка достаточно для получения высокой пористости.

3.2. Механическая прочность

Механическая прочность образцов ACCC соответствовала результатам по плотности и пористости, то есть более высокая пористость приводила к более низкой механической прочности, что можно увидеть на рисунке 3.


Различные значения механической прочности на сжатие, представленные образцами, проанализированными в этом исследовании, являются следствием их ячеистой морфологии. В образцах А2 и А4 из-за большего количества и однородного распределения пор межпоровые стойки тоньше, что придает материалу меньшую прочность. Однако в образцах A6 и A8, хотя поры больше из-за слияния, стойки толще, что привело к более высокой прочности на сжатие. Даже в этом случае полученные значения были очень низкими, достигая максимального значения 0.62 МПа для состава А8 (пористость 78,23%).

Согласно Гибсону и Эшби [9], механическая прочность ячеистого материала является потенциальной функцией его относительной плотности согласно уравнению: где — механическая прочность полностью плотного материала, — геометрическая постоянная пропорциональности, его пористость и эмпирический показатель степени.

С помощью этого уравнения значения механической прочности, которые образцы CCC представили бы, если бы они имели ту же пористость, что и образцы ACCC, проанализированные в этом исследовании, были оценены на основе данных, представленных в литературе [6].Сравнение показано на рисунке 4.


Можно заметить, что значения механической прочности, оцененные для образцов CCC, значительно меньше, чем значения, измеренные для ACCC с такими же относительными плотностями. Это позволяет сделать вывод, что автоклавирование эффективно для упрочнения ячеистого бетона на глинистой основе, поскольку при равной пористости прочность на сжатие ACCC значительно выше, чем у CCC, который отверждается при комнатной температуре.

Поскольку более высокая прочность на сжатие, проанализированная в этом исследовании, была равна 0.62 МПа для образца с 0,8 мас.% Al, становится ясно, что необходимо уменьшить количество используемого порошка Al, чтобы получить образцы с более низкой пористостью и, следовательно, более высокой механической прочностью, чтобы соответствовать техническим условиям. Однако, если целью является использование материала с пористостью, аналогичной анализируемым здесь, необходимо изучить некоторые изменения в составе.

3.3. Микроструктура и фазовый анализ

Кристаллические фазы ACCC сравнивали с таковыми из глинистого ячеистого бетона, выдержанного при 90% относительной влажности в течение 21 дня (Рисунок 5).В обоих случаях могут наблюдаться пики каолинита и галлуазита из непрореагировавшей глины. Относительная интенсивность пика кальцита уменьшается при автоклавировании CCC, что приводит к образованию тоберморита. Типичные игольчатые структуры тоберморита [12, 13] более заметны в образце ACCC (рис. 6 (b)) по сравнению с образцом, отвержденным CCC. при низкой температуре (рисунок 6 (а)).


4. Выводы

Это исследование было направлено на изучение влияния автоклавного отверждения на механическую прочность ячеистого бетона на глинистой основе.Были проанализированы пористость и механическая прочность образцов разного состава, различающихся только содержанием Al, и результаты сопоставлены с литературными данными для глинистого ячеистого бетона, отвержденного при комнатной температуре (CCC).

По результатам можно сделать следующий вывод: (i) Образцы с содержанием алюминиевого порошка от 0,6 до 0,8% производили столько водорода, что поры больше не оставались дискретными, то есть поры сливались до такой степени, что избыток водорода мог сбежать из матрицы.Это означает, что, вероятно, будет оптимальный уровень добавления алюминия в диапазоне от 0,4 до 0,6% для получения максимальной пористости. (Ii) Механическая прочность образцов ACCC варьировалась в зависимости от их пористости, то есть она увеличивалась по мере уменьшения пористости. . Однако полученные значения были очень низкими, достигая максимума 0,62 МПа для образца с более низкой пористостью (78,23%). (Iii) Путем экстраполяции данных, представленных в литературе [6] для образцов CCC, было обнаружено, что, при той же пористости и составе автоклавный глинистый ячеистый бетон (ACCC) демонстрирует значительно более высокую механическую прочность, чем CCC, тем самым показывая, что автоклавирование эффективно для упрочнения этого типа материала.(iv) Следует использовать меньшее количество порошка Al, чтобы уменьшить пористость и повысить механическую прочность. Другой возможностью было бы изменение твердофазного состава исследуемого ACCC.

Благодарности

Авторы благодарны г-ну Занону и г-ну Ногара из Селукона (Крисиума, Южная Каролина, Бразилия) за предоставленный алюминиевый порошок, используемый в этом исследовании, а также за разрешение использовать их автоклав для нашей экспериментальной работы.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПЛОТНОСТЬ И ПРОЧНОСТЬ ПЕРИОДИЧЕСКОГО БЕТОНА

Газобетон является относительно однородным материалом по сравнению с обычным бетоном, поскольку он лишен фазы крупного заполнителя, но при этом демонстрирует значительные различия в своих свойствах.Большинство исследований в прошлом ограничивалось автоклавными продуктами. В данной статье представлены результаты систематического исследования, проведенного с целью определения влияния соотношения известково-цементный материал, летучей золы как частичной / полной замены песка, размера частиц песка и дозировки аэрирующего агента на плотность и прочность на сжатие. газобетон влажного твердения и автоклавного твердения. В этом исследовании установлено, что с точки зрения снижения плотности летучая зола может играть ключевую роль в ячеистом бетоне без особого ущерба для прочности.Наблюдается, что повышенное соотношение извести и цемента отрицательно сказывается на прочности, тогда как уменьшение размера частиц песка ниже определенного уровня не оправдано в случае неавтоклавного пенобетона. (А)

  • Наличие:
  • Корпоративных авторов:

    Томас Телфорд Лимитед

    Лондон, объединенное Королевство
  • Авторов:
    • Ramamurthy, K
    • НАРАЯНАН, N
  • Дата публикации: 2000-6

Язык

Информация для СМИ

Предмет / указатель

Информация для подачи

  • Регистрационный номер: 00795011
  • Тип записи: Публикация
  • Агентство-источник: Транспортная научно-исследовательская лаборатория
  • Файлы: ITRD
  • Дата создания: 7 июля 2000 00:00

Неавтоклавный газобетон (NAAC)

Неавтоклавный газобетон (NAAC) — это тип легкого бетона, который используется для производства блоков и замены кирпича.NAAC легче обычного бетона. Он образуется из портландцемента, летучей золы, известняка, алюминиевого порошка и воды. Газобетон обладает хорошей прочностью, долговечностью, хорошей тепло- и звукоизоляцией. Плотность этого материала в сухом состоянии составляет от 600 кг / м3 до 1600 кг / м3. Неавтоклавные блоки из легкого бетона можно использовать как в жилищном, так и в коммерческих целях.

Мы разработали уникальный рецепт легкого газобетона без использования автоклавов, который позволяет достичь плотности от 250 кг / м2 (даже меньше) с отличной прочностью на сжатие, тепло- и звукоизоляцией.

В нашей компании вы можете приобрести сухую смесь для неавтоклавного легкого газобетона (в бумажных мешках по 50 кг) и миксер с насосом. Чтобы получить расценки быстрее, просто отправьте нам запрос через WhatsApp +971557310655

PIONER GROUP поставляет заполнение из легкого пенобетона для заполнения по технологии холодногнутых стальных конструкций и мы можем поставить линии по производству сухих строительных смесей (штукатурка, стяжка пола, самовыравнивающаяся смесь, сухая смесь из легкого пенобетона и т. Д.) С хорошей ценой и скоростью доставки.

Максимальная вместимость (розлив) — до 250 м3 выпускаемой продукции в сутки.

Проектная мощность — до 200 м3 выпускаемой продукции в сутки.

Выпускаемая продукция — маркированных стеновых и перегородочных блоков, средней плотности D250 — D700, прочностью на сжатие 0,8 — 4,0 МПа.

Массовый объем — 1 м3.

Время каста одной массы — около 7 минут.

Время выдержки массы перед резкой — 3-4 часа.

Время выдержки массы перед упаковкой — 19 — 20 часов.

Бетонный инвентарь — 120т.

Масса заправочного инвентаря — 120т.

Мощность оборудования -50 кВт + 45 кВт водяного отопления.

Расход воды — 50 тонн в сутки.

Сервис — 6 человек.

Окружающая среда — в цехах — торговые площади в условиях отсутствия влаги при температуре +5 ° C мин.

Площадь цеха — 2000 м2.

Высота заливки — 7,5 м.

Высота зоны отдыха — 3,5 м мин.

Прямоугольный автоклавный газобетонный блок, Прочность на сжатие: 3 — 4,5 (это 2185 Часть 3), 2800 рупий / кубический метр

Устойчивость к возгоранию Блоки AAC устойчивы к возгоранию в течение определенного периода времени.Это от 2-х часов минимального времени до 6-ти часового максимального времени. Однако их стойкость к возгоранию зависит от толщины блоков AAC. В сооружениях, где противопожарной безопасности уделяется особое внимание. Более того, предотвращение распространения огня — это очень хороший и положительный момент в процедурах безопасности.

Устойчивость к вредителям и насекомымБлоки AAC устойчивы к вредителям и насекомым. Это большой плюс, помогающий в обслуживании здания. Это потому, что AAC Bricks неорганический материал.Это, в свою очередь, снижает повреждение конструкций. Они предотвращают проникновение термитов в здания. Таким образом, обеспечивая защиту и сохраняя огромные потери для конструкций. Действительно, это особенное качество и наиболее необходимая защита, обеспечивающая полную защиту от вредителей.

Звукоизоляция в природе Блоки AAC по своей природе звукоизолированы. Это связано с их пористой природой, которая поглощает звуки до определенных уровней децибел. Эта специальность в них предлагает спокойные условия для работы и проживания.Блоки AAC могут поглощать звук в диапазоне или ограничении 45 децибел, что считается очень хорошим на оживленных городских площадях. Более того, в таких зданиях, как отели, больницы, общественные аудитории и студии и подобные им здания, они предлагают полную звукоизоляционную среду, которая так полезна для эффективной звукоизоляции.

Устойчивость к землетрясениям Блоки AAC устойчивы к землетрясениям. Благодаря своему естественному свойству он легкий. Это, в свою очередь, увеличивает устойчивость строительных конструкций.Обычно землетрясение сказывается непосредственно на весе здания. Кирпичи AAC, используемые при строительстве высотных зданий, в том числе моноблочных, являются наиболее надежными и безопасными.

Быстрые строительные работы Блок AAC помогает в быстрых строительных работах, тем самым сокращая время и затраты на строительство. В AAC Bricks легко использовать обычные инструменты для резки стен для электромонтажных работ, включая сверление отверстий. Даже ленточные пилы можно использовать для резки и выравнивания кирпичей AAC.Поскольку они имеют большие размеры, их преимущество в том, что в конструкциях мало стыков. Таким образом, обеспечивается быстрое строительство, включая прочную структурную поддержку здания. Следовательно, время работы при установке блоков AAC сокращается за счет меньшего количества блоков AAC. Это приводит к сокращению затрат времени на кладочные и штукатурные работы. Так что строительные работы ведутся раньше срока.


Рентабельность

Блоки AAC очень рентабельны по своей природе.Таким образом, предлагая экономию затрат и меньше инвестиций на строительные работы. По сравнению с глиняным кирпичом его вес составляет менее 80 процентов. Это значительно снижает собственный вес. Кроме того, уменьшение собственного веса с таким огромным запасом приводит к сокращению использования цемента и стали в строительстве. Это экономит много денег. Изготовление блоков AAC также обходится дороже по сравнению с блоками clc.

Универсальность в природе Неопасность в теплоизоляции В теплоизоляции блоки AAC обладают изоляционными качествами.Уровень теплопроводности кирпичей AAC поддерживает температуру в помещении зимой. Летом здесь прохладно и приятно. В конце концов, он предлагает огромную экономию на нагрузке на кондиционер, что означает меньшие счета за электроэнергию.

Влагостойкость
Легкий вес
Идеальная форма и размер
Высокая устойчивость к проникновению воды

Дополнительная информация

Срок поставки От 1 до 3 дней
Производственная мощность 100 кубических метров / день

Преимущества и недостатки газобетона

Прежде чем рассматривать преимущества и недостатки газобетона, необходимо упомянуть, что газобетон бывает двух типов: неавтоклавный и автоклавный твердый .Давайте рассмотрим разницу между автоклавным и неавтоклавным газобетоном.

Неавтоклавный газобетон затвердевает при стандартных условиях (в камерах термообработки). Такая технология изготовления обеспечивает минимальные затраты на оборудование и электроэнергию.

Сырьем для производства являются: цемент, минеральный заполнитель (песок, зола, доломитовый порошок), вода, газообразующий агент (на основе алюминиевой пудры), модифицирующие добавки.

Автоклавный бетон получается в результате твердения ячеистого бетона в автоклавах при температурах 120 и 200 о С и давлении P = 1.4 МПа Сырьем для производства газобетона являются: известь, цемент, минеральный заполнитель, вода, пенообразователь (на основе алюминиевой пудры) и модифицирующие добавки. Благодаря извести количество используемого цемента меньше, поэтому сырьё для производства автоклавного газобетона меньше, чем у неавтоклавного. Автоклавное твердение обеспечивает лучшую прочность газобетона по сравнению с неавтоклавным.

Можно выделить следующие преимущества автоклавного и неавтоклавного бетона для строительства:


1.Экономическая эффективность строительства. Низкая стоимость материалов, а также большие габариты блоков при меньшем весе позволяют снизить стоимость строительства.

2. Низкая плотность, низкая теплопроводность. Газобетонные блоки имеют плотность от 400 до 800 кг / м3 и коэффициент теплопроводности от 0,1 до 0,21 Вт / (м * оС), поэтому они легкие и теплые.

3. Хорошая звукоизоляция. Благодаря пористой структуре газобетон обеспечивает звукоизоляцию в 10 раз лучше, чем кирпичная стена такой же толщины.

4.Пожарная безопасность. Газобетон — негорючий, огнестойкий материал, имеет первый класс огнестойкости, превышающий класс огнестойкости обычного бетона.

5. Паропроницаемость. Благодаря пористой структуре газобетон обладает хорошей паропроницаемостью. Коэффициент паропроницаемости составляет от 0,23 до 0,4 мг / (м * ч * Па). Дома из газобетона «дышат», а микроклимат внутри комфортный.

6.Экологичность. Газобетон содержит натуральные экологически чистые компоненты. Материал не выделяет вредных веществ, не стареет и не подвержен разложению. Радиационный фон составляет от 9 до 11 мкР / ч. Для справки: средний радиационный фон в Москве составляет от 13 до 15 мкР / ч.

А теперь рассмотрим недостатки газобетона:

Для производства автоклавного газобетона требуется очень дорогое оборудование, а также высокое энергопотребление и большие производственные мощности.Поэтому мелкосерийное производство блоков экономически невыгодно. Это ключевой недостаток автоклавного газобетона. В этом случае для малого бизнеса более привлекательным представляется производство неавтоклавного газобетона.

Автоклавный газобетон имеет еще один недостаток — из-за высокого водопоглощения требуется исключить воздействие окружающей среды на материал, т.е. покрыть автоклавный газобетон штукатуркой, декоративные фасады и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *