Размер атома кремния – Закон Мура против нанометров

Содержание

Электроника-2020 – жизнь после смерти кремния / Аналитика

Публикации о различных способах производства полупроводников на основе материалов, отличных от традиционного кремния, в последнее время буквально захлестнули научные издания и популярную прессу. Во многих случаях альтернативы кремнию имеют под собой вполне логичную основу: традиционная кремниевая подложка по определению не может быть гибкой, многие материалы справляются с высокими частотами гораздо лучше кремния и так далее. Однако растущий интерес к альтернативным полупроводникам имеет и другую, более основательную причину. Дело в том что привычный кремний в скором времени рискует попросту не справиться с темпами эволюции полупроводниковой промышленности и по ряду причин физического свойства перестанет устраивать разработчиков новых чипов. Множество разнообразных и даже экзотических потенциальных замен кремниевым полупроводникам – от графена и кремниевых нанотрубок до квантовых и ДНК-структур, освещается в прессе с завидной регулярностью, однако о сроках и причинах грядущей смерти кремния в качестве основы современной полупроводниковой промышленности сообщается достаточно мало. Эта публикация призвана пролить свет на ближайшие – порядка 10-15 лет, перспективы развития электроники и ответить на ряд ключевых вопросов.
Парадоксально, но высокодоходный многомиллиардный и один из наиболее интеллектуальных бизнесов современности – полупроводниковая промышленность, насчитывает от роду несколько десятков лет. Родившись в качестве подмножества электротехники, электроника быстро пережила «ламповый» период развития и уже в лабораториях Белла в 1947 году был изобретён транзистор – компактное полупроводниковое устройство с тремя (и более) электродами, способное управлять током и генерировать электрические колебания. За считанные годы после изобретения транзистор превратился в универсальный строительный «кирпичик» электронного, а чуть позднее – и цифрового мира, став основным компонентом микросхем и процессоров. И если первое полностью полупроводниковое устройство, радиоприёмник Regency TR-1 образца 1954, было выполнено всего лишь на четырёх транзисторах, то представленный в 1960 году первый в мире портативный полупроводниковый телевизор Sony TV8-301 с 5-дюймовым экраном содержал 23 кремниевых и германиевых транзистора, а первый в мире процессор Intel 4004, выпущенный в 1971 году, состоял из 2300 транзисторов. Дальше темпы развития электроники удобнее отслеживать по анонсам процессоров Intel. После появления в 1974 году 2 МГц процессоров Intel 8080 на базе 4500 транзисторов события стали развиваться с невиданным доселе ускорением: 1978 год – выпуск первого 16-битного процессора Intel 8086 на 29 тыс. транзисторов; 1982 год – полностью совместимый с предшественником процессор Intel 286 на 134 тыс. транзисторов; 1985 год – процессор Intel 386 на 275 тыс. транзисторов. И, наконец, год 1989 – 25 МГц процессор Intel 486, передвинувший планку сразу до отметки 1,2 миллиона транзисторов. В первом процессоре Pentium (1993 год) количество транзисторов превысило 3 миллиона. Миллиардный рубеж был преодолён в 2006 году – 2-ядерные процессоры Intel Itanium 2 семейства 9000, выпускавшиеся с соблюдением норм 90-нм техпроцесса, содержат более 1,7 млрд. транзисторов. Сегодня количество транзисторов в составе процессоров и графических чипов превышает миллиард даже в обычных настольных и портативных ПК. Никого не удивляет тот факт, что за первый приёмник на четырёх транзисторах 60 лет назад приходилось выкладывать $49,99, а сегодня каждый из миллиардов транзисторов настольного ПК обходится в десятки-сотни нанодолларов, а совсем скоро речь пойдёт о пикодолларах за один транзистор. Если бы авиапутешествия дешевели и становились быстрее с такой же скоростью, то авиарейс между Парижем и Нью-Йорком, обходившийся в 1978 году в $900 и занимавший порядка семи часов, обходился бы сегодня примерно в цент и длился бы не более секунды! Кстати, первый транзистор, созданный в Bell Labs, помещался на ладони. Современные 32-нанометровые транзисторы в сотни раз меньше красной кровяной клетки человека. Трудно сегодня сыскать на белом свете другую сферу человеческой деятельности, сравнимую по динамике и темпам развития с электроникой. Взять для примера хотя бы дебютировавший в 2000 году процессор Intel Pentium 4 на 42 млн. транзисторов и сравнить на его примере темпы развития разных отраслей промышленности. Если бы за прошедшие полвека автомобилестроение развивалось темпами электроники, сейчас расстояние от Москвы до Владивостока мы могли бы преодолевать за считанные секунды! Кстати о деньгах: если бы цены на автомобили падали с такой же скоростью, новый автомобиль мог бы стоить сегодня менее 1 цента. На диаметре точки, стоящей в конце этого предложения (примерно 0,1 мм, или 100 тысяч нм), может уместиться 3 тысячи 32-нм транзисторов. Вот вам ещё несколько ориентиров: диаметр человеческого волоса примерно равен 90000 нм. Суммарное количество транзисторов, произведённых в 2003 году, превысило астрономически огромное число, описываемое десяткой с 19 нулями — 10.000.000.000.000.000.000. Несметные количества обычно принято сравнивать с чем-либо бесконечным – числом звёзд, песчинок, но вы только представьте себе, что указанное выше число в 100 раз превышает количество всех муравьёв на планете Земля! Ещё одна замечательная метафора – остриё иголки. Преодолевая барьер создания процессора с миллиардом транзисторов, физические размеры транзисторов уменьшили так, что на этом самом острие диаметром примерно 1,5 миллиона нанометров их может разместиться более 50 тысяч! Можно без устали приводить примеры ошеломляющих темпов развития электроники, но, пожалуй, самым невероятным является факт
предсказуемости
этой динамики. Более того, существует закон, описывающий этот процесс, и называется он

Закон Мура

В далёком теперь 1965 году Гордон Мур (Gordon Moore), один из отцов-основателей компании Intel, смог гениально предсказать будущее электроники. Вкратце это предсказание, известное сегодня как Закон Мура (Moore’s Law) формулируется так:
Количество транзисторов в микросхемах будет удваиваться каждые два года
С тех пор прогноз Гордона Мура исполняется непостижимым образом: каждые два года экспоненциально удваивается число транзисторов в чипах, что ведёт к неуклонному росту вычислительной мощности полупроводников, экспоненциальному сокращению стоимости их производства. На протяжении всей истории существования полупроводниковой электроники Закону Мура многократно предсказывался конец и забвение. Причины при этом всплывали самые разные – слишком уж малы размеры элементов транзисторов; велики токи утечки, слишком разогревавшие чип и многое другое, о чём мы поговорим немного ниже. Но до сегодняшнего дня каждый раз учёным и технологам удавалось найти необходимые материалы, компоненты и условия для перехода на следующую ступень технологического процесса с ещё более прецизионными характеристиками.
На этом вступление к теме можно бы посчитать законченным, однако прежде чем переходить к проблемам, стоящим перед современным полупроводниковым производством, попробуем определиться, стоит ли овчинка выделки? Стоит ли затрачивать огромные силы и средства ради удвоения количества транзисторов в чипах каждые два года? Иными словами,

Так ли необходимо дальнейшее соблюдение Закона Мура?

Передо мной стоит ультрапортативный компьютер, выполненный на самых современных полупроводниковых компонентах. Даже в таком лёгком и компактном устройстве невозможно сосчитать количество транзисторов – ведь даже его цветной жидкокристаллический экран представляет собой тонкоплёночную транзисторную матрицу! Казалось бы, чего ж ещё желать – живи и радуйся. Но… давайте позволим себе поворчать. Всем хороша машинка, но батарейки почему-то не хватает на пару суток автономной работы. Да и греется аппарат местами, что также не добавляет ему продолжительности работы. И, наконец, всегда найдутся приложения – игрушка ли, видеозапись, которые обязательно вызовут досаду своим «торможением». Иными словами, даже самое идеальное и самое современное устройство всегда можно раскритиковать если не за габариты, то уж точно за чрезмерную «прожорливость», тепловыделение и недостаточную производительность. Теперь посмотрим на этот вопрос шире. В плане недостатка вычислительной мощности и экономичности нам даже не придётся касаться ненасытных корпоративных нужд: давайте просто вспомним некоторые приложения, необходимые каждому, на каждом шагу, но реализация которых до сих пор попросту невозможна из-за недостаточно развитой электроники. Многим из читателей уже приходилось сталкиваться с проблемами общения в чужой стране из-за незнания местного языка. Конечно, выручает международный язык жестов и хотя бы поверхностное знание одного из универсальных международных языков общения, но что если бы ваши слова переводились на местный язык в реальном времени, а вы в ответ слышали бы автоматический перевод? Заманчиво? Ещё как, сколько бы границ при этом пало и скольких бы недоразумений удалось избежать, не говоря уж об экономии времени и денег. Также попробуйте представить системы автоматического сканирования лиц при входе в аэропорт, способные сверять их с базой данных террористов и блокировать подозрительных лиц при совпадении. Экономия времени в этом случае не менее ощутима чем значительный рост безопасности. Автомобили с автоматическими шофёрами, которым достаточно назвать пункт назначения для доставки пассажира наиболее свободным, кратчайшим и безопасным маршрутом, также скоро могут перестать быть атрибутами лишь фантастических фильмов. На самом же деле сегодня мы даже приблизительно не можем представить себе все возможные способы использования возросшей вычислительной мощности – до тех пор, пока эти возможности не появятся. Сейчас учёные лишь пытаются предсказывать развитие событий и составляют список задач, требующих вычислительных мощностей даже в полевых условиях. Одна из таких категорий — моделируемые условия, привычные для виртуальных миров, коллективных интерактивных игр, трехмерного кино. Словом, там, где визуальное представление данных и взаимодействие с реальным миром требуют обретения новых качеств, а использование моделей требует более интеллектуальных распределенных вычислительных технологий, инструментов генерации пользовательского трехмерного контента и технологий повышения эффективности мобильных устройств. Другая насущная задача современности – так называемое «очувствление» виртуальности. То есть, объединение реального и цифрового миров, приобретение современными мобильными, портативными, стационарными компьютерами дополнительных «органами чувств». Чем больше разных датчиков и сенсоров –»окон» в реальный мир, тем больше возможностей преобразования аналоговой информации в цифровую, поддающуюся дальнейшей компьютерной обработке, систематизации и хранению, тем больше возможностей оказывать воздействие на жизнь человека. Современные сенсоры и без того весьма разнообразны — GPS-приёмники, датчики состояния окружающей среды, видеосенсоры (от веб-камер до систем развития стволовых клеток и повреждения кожи), всевозможные «сенсоры-атомы», взаимодействующие с другими устройствами для формирования гибких физических образов. А динамически компонуемые вычисления позволят преодолеть ограничения ресурсов мобильных устройств – таких как небольшой размер экрана путем создания логической платформы с использованием ресурсов соседних устройств. На повестке дня — интеллектуальные мобильные устройства с максимальными вычислительными, коммутационными и сенсорными свойствами, легко адаптируемые к проблемам, потребностям и окружению пользователя с помощью датчиков и анализа информации. Датчики могут собирать сколь угодно бесконечное количество данных, но одна из проблем, связанных с ними – точная интерпретация и понимание этих данных. Взять, например, идею мобильной системы контроля здоровья, позволяющую следить за состоянием своего здоровья, чтобы не лечить, а предупреждать болезнь. Такая мобильная платформа будет постоянно отслеживать состояние жизненно важных органов человека, а также записывать информацию о питании для поддержания хорошей физической формы и лучшего понимания соответствия активности и количества потребляемой пищи.

Как делают процессоры сегодня

Близятся времена, когда для дальнейшего соблюдения Закона Мура обычной эволюции технологий — даже с самыми гениальными инженерными ухищрениями, будет недостаточно. Времена эти по предварительным оценкам наступят сравнительно скоро – в 2010-х годах. Почему об этом заговорили именно сейчас? Дело в том, что постоянный непрерывный прогресс в развитии полупроводников не мог не привести со временем к исчерпанию возможностей ряда инструментов, применяемых в технологическом производственном процессе, а новые инструменты в силу ограничений физических законов ещё не готовы или по той или иной причине не работают на практике. Процесс создания чипа — дело трудоёмкое и хлопотное. Чем сложнее микросхема, тем большее количество этапов приходится на его изготовление. Например, осваивая новый, более точный техпроцесс, чипы статической памяти (SRAM) со сравнительно несложной структурой (относительно сложной архитектуры процессоров) обычно демонстрируют первыми, и лишь по прошествии определённого уровня удаётся изготовить полноценный процессор или так называемую «систему-в-чипе» (SoC, System-on-Chip). Технология изготовления современного процессора на традиционной кремниевой подложке может включать до 300 стадий, но если не углубляться в дебри, основные этапы выглядят следующим образом. Чипы производятся на поверхности тонких круглых пластин из чистейшего кремния путём многослойной обработки различными химикатами, газом и светом. Кремний для этой цели выбран не случайно, поскольку он относится к уникальному классу полупроводников – материалов, электрическая проводимость которых где-то между проводником и изолятором. Свойства кремния в процессе обработки могут быть изменены таким образом, что он становится или изолятором, препятствующим течению электрического тока, или проводником, пропускающим через себя электрический ток. Что касается физических размеров кремниевых пластин, используемых для масштабного производства, здесь всё логически понятно: чем больше диаметр пластины, тем выше выход готовых чипов с каждой пластины, и в то же время тем сложнее обрабатывать каждую пластину и снижать количество брака. До конца XX века в производстве преобладали пластины диаметром 200 мм (8 дюймов), однако на рубеже тысячелетий началось активное внедрение 300-мм (12-дюймовых) пластин. Сейчас многие компании активно разрабатывают планы использования 450-мм (15-дюймовых) пластин, однако на этом пути предстоит решить множество проблем до окончательного внедрения в массовое производство. Физически процессор представляет собой миллионы или миллиарды транзисторов, объёдинённых между собой сверхтонкими алюминиевыми или медными проводниками. На практике процесс получения чипа сводится к созданию на поверхности чистой кремниевой пластины тонких слоёв различных материалов по точнейшим шаблонам. С учётом того, что речь идёт о формировании миллиардов элементов транзисторов, размеры которых составляют десятки и даже единицы нанометров, непосредственное нанесение этих элементов на пластину каким-либо физическим способом попросту невозможно. Поэтому слои материалов осаждаются (или «выращиваются») на поверхности пластины, после чего ненужные материалы удаляются, и на поверхности остаётся лишь необходимое. Так на полированной поверхности кремниевой пластины под воздействием температуры «выращивается» изолирующий слой диоксида кремния, играющий одновременно роль затвора транзистора, с помощью которого регулируется прохождение тока. Следующим в дело вступает процесс, называемый фотолитографией. Сначала на пластину наносится временный слой светочувствительного материала — «фоторезиста». С помощью ультрафиолета фоторезист экспонируется через специально подготовленный «трафарет» — «фотомаску», благодаря чему «засвечиваются» определённые участки фоторезиста. После этого экспонированные участки фоторезиста удаляются (по аналогии с проявлением фотоплёнки), и под ними открываются участки нанесённого ранее диоксида кремния. Далее открытые участки диоксида кремния удаляют с помощью процесса под названием «etching», наиболее близкий перевод которого на русский язык звучит как «сухое травление». После удаления оставшегося фоторезиста на поверхности пластины остаётся рельефный рисунок из диоксида кремния, на который с помощью дополнительных этапов фотолитографии и сухого травления наносятся дополнительные материалы – вроде токопроводящего поликристаллического кремния. И далее – новый слой со своим уникальным рисунком, в результате чего формируется трёхмерная структура кристалла микросхемы. Лишь на словах всё это звучит просто. На практике в процессе изготовления чипа применяется множество различных этапов химической и физической обработки. Например, процесс «легирования», при котором экспонированные области кремниевой пластины бомбардируют «ионами» различных химических добавок с целью получения областей различной (p- и n-) проводимости. Также важен процесс создания специальных межслойных «окошек», заполняемых металлическим проводником (в последнее время – всё чаще медью, хотя ранее широко применялся алюминий) для создания электрических соединений между слоями. Весь процесс создания трёхмерных многослойных «небоскрёбов» может повторяться несколько десятков раз и занимать период в несколько недель. Далее производится процесс тестирования, сборки и корпусировки чипов, после чего они поступают в розницу или компаниям, которые используют полученные чипы для создания конечных электронных устройств. Теперь вернёмся на несколько шагов назад и вспомним, о каких масштабах нынче идёт речь. В 2008 году ряд компаний объявил об успешной разработке 32-нанометрового технологического процесса, а 2009 можно назвать годом перехода на этот техпроцесс, наряду с широким промышленным освоением 45-нм норм. Так, например, ещё в 2008 году компанией Intel был продемонстрирован первый работающий модуль статической памяти (SRAM), выполненный с соблюдением норм 32-нм технологического процесса. Стоит отметить, что размер каждой ячейки такой памяти составляет всего лишь 0,182 квадратных микрометра, а площадь чипа, содержащего более 1,9 миллиардов транзисторов, составляет всего 118 квадратных миллиметров. Уже весной 2009 года 32-нанометровая технология была объявлена компанией Intel полностью готовой к массовому производству сложнейшей процессорной логики, в подтверждение чему был продемонстрирован первый работающий 32-нм процессор. Стоит подчеркнуть, что определение «32-нанометровый технологический процесс» говорит о размерах затвора транзистора. То есть, при 32-нм технологических нормах размер затвора транзистора составляет эти самые 32 нанометра, а «шаг» транзисторов составляет примерно 112,5 нм. Кстати, ещё одна особенность Закона Мура, или, если хотите, следствие из него гласит о том, что размеры транзисторов продолжают уменьшаться в 0,7 раза каждые 2 года. Если ширина затвора 32 нм пока что ещё хоть как-то звучит в качестве физической длины, то ширина зазора диэлектрика из диоксида кремния, располагаемого между кремниевой подложкой и затвором, уже на этапе разработки 45-нм техпроцесса составила всего 1,2 нанометра. Если вспомнить, что диаметр атома кремния составляет всего лишь 0,24 нм, мы приходим к совершенно невероятным выводам: толщина отдельных элементов современного транзистора сравнима с диаметрами несколькими атомов! На практике разработчикам новых техпроцессов пришлось отказаться от использования диоксида кремния в качестве изолятора между подложкой и затвором. Дело в том, что при масштабах, оцениваемых диаметрами атомов, классический диоксид кремния уже не мог исполнять роль качественного диэлектрика: слишком тонкий его слой не способен эффективно снижать интенсивность квантово-механического туннельного перехода электронов через барьер. На практике это означает, что кроме того, что слишком тонкий слой диоксида кремния уже не гарантирует точное переключение транзисторного ключа, «токи утечки» через столь ненадёжный изолятор приводят к тому, что в масштабе всего чипа с его миллиардами транзисторов мы получаем самую настоящую печку, потребляющую неоправданно высокое количество энергии и выделяющую огромное количество побочного тепла. В Intel в процессе разработки 45-нм и 32-нм технологических процессов эту проблему удалось решить заменой традиционного диэлектрика затвора на материал с высоким диэлектрическим коэффициентом (Hi-K) с добавками оксида гафния. Также было обнаружено, что для эффективного производства Hi-K диэлектриков на основе гафния необходимо изготавливать электрод затвора из другого материала: вместо поликристаллического кремния использовать металл. Другая фундаментальная проблема полупроводникового производства – физические ограничения по использованию ультрафиолета в качестве источника света для экспозиции фоторезистов. Дело в том, что даже самые современные ультрафиолетовые инструменты с длиной волны далеко за пределами видимого фиолетового спектра, уже не в состоянии экспонировать фоторезист под масками, поскольку зазоры в этих масках слишком малы для прохождения «толстых» волн света. В настоящее время для наиболее экспонирования наиболее критичных слоёв используются литографические инструменты «глубокого ультрафиолета» (DUV, Deep Ultraviolet) с длиной волны 193 нм, которые исчерпали свои возможности ещё в эпоху освоения 0,1 мкм барьера (90-нм техпроцесс). Все попытки создания лазеров для сканеров и степперов с меньшей длиной волны – 157 нм, несколько лет назад потерпели неудачу ввиду невозможности создания для таких экспозиционных систем надёжной оптики (у лучших образцов на базе фторсодержащих материалов в конце концов так и не удалось избавиться от эффекта двойного преломления и высокой гигроскопичности). Поэтому разработчикам до сих пор приходится бороться с дифракцией 193 нм лазеров совершенно фантастическим способом – применением оптики с высокой апертурой, созданием фотомасок с фазовым сдвигом и рядом других инженерных ухищрений. Ещё на этапе разработки 65-нм техпроцесса фотомаска с фазовым сдвигом выглядела удивительно: шутка ли сказать, разработчикам пришлось решать сложнейшие оптические уравнения по обратному дифракционному преломлению света в «закоулках» стенок фотомаски. Фотомаска для 32-нм техпроцесса и вовсе выглядит фантастически: если проводить аналогии, считайте, что перед вами поставлена задача нарисовать точнейший чертёж для курсового проекта с учётом толщины и насыщенности линий, но вместо заточенных карандашей или рейсфедеров с тушью вы получили кусок угля или мела. Тот самый случай, когда все фантасты мира просто «отдыхают» перед гениальностью инженерной мысли. Помимо этого для разработки современных точнейших техпроцессов приходится применять ряд других ухищрений – таких как, например, двойное экспонирование, в результате которого получается действительно отчётливый рисунок канавок. А также процесс иммерсионной литографии – то есть, литографии с применением специальной жидкости между оптикой и экспонируемой пластиной, позволяющей продолжить использование 193 нм излучения. Ради дальнейшего использования кремниевых полупроводников для производства чипов в настоящее время ведутся поиски альтернативных инструментов для экспозиции фотомасок. Так, в лабораториях ряда компаний уже на протяжении нескольких лет проходят испытания установки с лазерами так называемого сверхглубокого ультрафиолета (EUV, Extreme Ultraviolet), с длиной волны порядка 13 нм. Это излучение уже гораздо ближе к рентгену нежели к свету в традиционном понимании, однако тут дело уже не в названиях и определениях, заработало бы. К сожалению, с развитием EUV литографии дела обстоят не так радужно, как прогнозировалось несколько лет назад, на заре освоения этой технологии. До сих пор не разработаны достаточно мощные источники излучения — для промышленного производства необходима мощность порядка 50-100 Вт, стабильными пока получаются установки мощностью 10-20 Вт. До конца не определены материалы, подходящие в качестве «светочувствительных» фоторезистов. Список проблем можно продолжать, но факт остаётся фактом: технология EUV литографии по-прежнему далека от коммерциализации. В настоящее время также обсуждается ряд других технологических приёмов для так называемой «литографии следующего поколения» (Next Generation Lithography, NGL), включая безмасочную литографию, нанопечать и улучшенную двухпроходную экспозицию. Однако всё это лишь отсрочит, но не отменит смерть полупроводникового кремния.

Будут ли нанотехнологии 2020 года «соблюдать» Закон Мура?

Теперь давайте взглянем на шкалу развития технологий выпуска кремниевых полупроводников на ближайшее обозримое будущее. Реальность следующего технологического процесса с нормами 22 нанометров, который, согласно Закону Мура, должен пойти в серию в 2011 году, действительно подтверждена экспериментальными исследованиями ряда компаний. В частности, компании IBM, с которой сотрудничают AMD и Freescale Semiconductor, уже удалось создать прототип чипа статической памяти (SRAM) с применением норм 22-нм техпроцесса. Подтверждают реальность 22-нм техпроцесса и в Intel, где для выпуска чипов с такими нормами намерены использовать те же 193-нм инструменты в сочетании с иммерсионной литографией и техникой двойной экспозиции. О создании прототипа 28-нм статической памяти с шириной затвора 24 нм также объявила тайваньская компания TSMC. В лабораторных условиях с помощью оптической литографии учёным ещё в 2003 году удалось получить экспериментальный транзистор с шириной затвора 10 нм. Таким образом можно предполагать, что возможностей кремниевых полупроводников теоретически хватит ещё как минимум на два этапа эволюции технологии. Максимум на три. То есть, до 2015, от силы – до 2017 года. А что же дальше? А дальше наступит физический предел даже для «идеального» транзистора, функционирующего в совершенно идеальных условиях. Ибо при таких масштабах приходится оперировать с габаритами отдельных атомов и где классические приёмы уже не дают никакой гарантии стабильной работы, тем более в масштабе миллиардов электронных ключей чипа.
Итак, конец кремниевой эры полупроводниковой промышленности уже не за горами. Однако это совершенно не означает смерть самой полупроводниковой промышленности. Сейчас учёные всего мира изучают различные свойства веществ с целью поиска достойной замены кремниевым полупроводникам. К таким свойствам можно отнести массу, заряд, спин различных веществ, их волновые и магнитные свойства. Наконец, появление новых классов нановеществ с замечательными уникальными свойствами также сулит в ближайшем будущем много интересных открытий и находок, часть из которых, вполне возможно, удастся воплотить в массовое производство электроники нового поколения.
Ссылки по теме:

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Радиусы атомов элементов | Формулы и расчеты онлайн

Азот
радиус атома азота
56 · 10 − 12 (Метр)
Алюминий
радиус атома алюминия
118 · 10 − 12 (Метр)
Аргон
радиус атома аргона
71 · 10 − 12 (Метр)
Астатин
радиус атома астатина
127 · 10 − 12 (Метр)
Барий
радиус атома бария
253 · 10 − 12 (Метр)
Бериллий
радиус атома бериллия
112 · 10 − 12 (Метр)
Бор
радиус атома бора
87 · 10 − 12 (Метр)
Бром
радиус атома брома
94 · 10 − 12 (Метр)
Ванадий
радиус атома ванадия
171 · 10 − 12 (Метр)
Висмут
радиус атома висмута
143 · 10 − 12 (Метр)
Водород
радиус атома водорода
53 · 10 − 12 (Метр)
Вольфрам
радиус атома вольфрама
193 · 10 − 12 (Метр)
Гадолиний
радиус атома гадолиния
233 · 10 − 12 (Метр)
Галлий
радиус атома галлия
136 · 10 − 12 (Метр)
Гафний
радиус атома гафния
208 · 10 − 12 (Метр)
Гелий
радиус атома гелия
31 · 10 − 12 (Метр)
Германий
радиус атома германия
125 · 10 − 12 (Метр)
Гольмий
радиус атома гольмия
226 · 10 − 12 (Метр)
Диспрозий
радиус атома диспрозия
228 · 10 − 12 (Метр)
Европий
радиус атома европия
231 · 10 − 12 (Метр)
Железо
радиус атома железа
156 · 10 − 12 (Метр)
Золото
радиус атома золота
174 · 10 − 12 (Метр)
Индий
радиус атома индия
156 · 10 − 12 (Метр)
Иридий
радиус атома иридия
180 · 10 − 12 (Метр)
Иттербий
радиус атома иттербия
222 · 10 − 12 (Метр)
Иттрий
радиус атома иттрия
212 · 10 − 12 (Метр)
Йод
радиус атома йода
115 · 10 − 12 (Метр)
Кадмий
радиус атома кадмия
161 · 10 − 12 (Метр)
Калий
радиус атома калия
243 · 10 − 12 (Метр)
Кальций
радиус атома кальция
194 · 10 − 12 (Метр)
Кислород
радиус атома кислорода
48 · 10 − 12 (Метр)
Кобальт
радиус атома кобальта
152 · 10 − 12 (Метр)
Кремний
радиус атома кремния
111 · 10 − 12 (Метр)
Криптон
радиус атома криптона
88 · 10 − 12 (Метр)
Ксенон
радиус атома ксенона
108 · 10 − 12 (Метр)
Литий
радиус атома лития
167 · 10 − 12 (Метр)
Лютеций
радиус атома лютеция
217 · 10 − 12 (Метр)
Магний
радиус атома магния
145 · 10 − 12 (Метр)
Марганец
радиус атома марганца
161 · 10 − 12 (Метр)
Медь
радиус атома меди
145 · 10 − 12 (Метр)
Молибден
радиус атома молибдена
190 · 10 − 12 (Метр)
Мышьяк
радиус атома мышьяка
114 · 10 − 12 (Метр)
Натрий
радиус атома натрия
190 · 10 − 12 (Метр)
Неодим
радиус атома неодима
206 · 10 − 12 (Метр)
Неон
радиус атома неона
38 · 10 − 12 (Метр)
Никель

www.fxyz.ru

Строение атома кремния (Si), схема и примеры

Общие сведения о строении атома кремния

Относится к элементам p-семейства. Неметалл. Обозначение – Si. Порядковый номер – 14. Относительная атомная масса – 28,086 а.е.м.

Электронное строение атома кремния

Атом кремния состоит из положительно заряженного ядра (+14), состоящего из 14 протонов и 14 нейтронов, вокруг которого по 3-м орбитам движутся 14 электронов.

Рис.1. Схематическое строение атома кремния.

Распределение электронов по орбиталям выглядит следующим образом:

+14Si)2)8)4;

1s22s22p63s23p2.

На внешнем энергетическом уровне кремния находится четыре электрона, все электроны 3-го подуровня. Энергетическая диаграмма принимает следующий вид:

Наличие двух неспаренных электронов свидетельствует о том, что кремний способен проявлять степень окисления +2. Также возможно возбужденное состояние для атома кремния за счет наличия вакантной 3d-орбитали. Электроны 3s -подуровня распариваются и занимают свободные d-орбитали:

Поэтому у кремния есть ещё одна степень окисления, равная +4.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Кремний — общая характеристика химического элемента

Кремний – химический элемент таблицы Менделеева. Попробуем разобраться, что же такое кремний – металл или неметалл?

Какова его природа, общая характеристика и свойства не только в физике, но и в химии? Как реагирует с другими веществами? Какие соединения образуют? Каковы области применения этого элемента?

Общая характеристика

Обозначение этого элемента в таблице Менделеева – Si (silicium – «силициум»). В таблице он стоит в четвертой группе третьего периода. Является неметаллом.

Первое название этого элемента — силиций. В середине 19 века его стали называть «кремнием».

Основные особенности:

  1. Второй по распространенности элемент таблицы Менделеева.
  2. Аналог углерода – это элемент (а также его генетический ряд) со своими специфическими особенностями.

Где можно взять кремний? В основном, в природе он находится в земле в виде оксидов и других структур горных пород (кварц, силикат и т. д.).

Состав и структура кремния

Рассмотрим основные параметры этого элемента в таблице.

ПризнакХарактеристика
Атомная масса28,086 а. е. м.
Молекулярная (молярная) масса28,086 г/моль
Размер атома / заряд ядра14
Валентность2,4
Степень окисления±4, -2
Плотность2,33 г/см3
Температура плавления1688 К
Химическая связьковалентная неполярная
Кристаллическая решеткаатомная

У кремния есть 3 изотопа: Si (28), Si (29), Si (30).

Электронное строение атома кремния показано на картинке:

Физические свойства

Строение атома кремния, из которого состоит большинство материалов, позволяет доказать ученым наличие аллотропии у этого элемента.

Выделяют 2 модификации:

  • аморфный;
  • кристаллический.

Первый представляет собой порошок коричневого цвета, который плавится при температуре свыше 1400 градусов Цельсия.

Второй – кристаллизованный кремний темно-серого оттенка с блестящей поверхностью.

По сравнению с предыдущим, обладает высокими показателями тепло- и электропроводности.

Химические свойства

Поскольку он находится в четвертой группе главной подгруппе таблицы Менделеева, то может проявлять как окислительные, так и восстановительные свойства.

Рассмотрим по отдельности каждый вид реакций.

Восстановительные процессы

С простыми веществами:

Si + 2Br2 = SiBr4;

Si + O2 = SiO2.

Со сложными веществами:

Кислоты

3Si + 12HF + 4HNO3 = 3SiF4 + 4NO + 8H2O.

Гидроксиды

Si + 2NaOH + H2O = Na2SiO3 + 2H2.

Окислительные процессы

Он проявляет при взаимодействии с гидридами, металлами, солями, сильными концентрированными кислотами.

Как правило, в качестве побочных продуктов в таких реакциях выступают окиси неметаллов, сульфаты, нитраты и другие соли, содержащие этот элемент.

Получение кремния

Различают два способа получения кремния: лабораторный и промышленный. Рассмотрим подробно оба.

В лаборатории

Его восстанавливают с помощью магния или алюминия при нагревании.

В промышленности

Получение этим способом требует больших усилий:

  1. В печах под действием кокса идет разложение диоксида кремния при температуре свыше 1790 градусов по Цельсию.
  2. Очищают полученный кремний от примесей. Как правило, получают соль, а затем обрабатывают кислотами.
  3. Очистку проводят до тех пор, пока массовая доля в образце не будет ниже 95%.

Кроме того, в промышленности в последние годы популярным способом очистки стало хлорирование. Оно используется чаще, поскольку этот метод экономически выгоден и дает большую степень очистки.

В России существует всего два завода по производству технического кремния: Каменск-Уральский и Усолье-Сибирский.

Области применения

Кремний имеет широкую область применения:

  1. Он является хорошим сырьем для получения его аллотропных модификаций и различных соединений на его основе.
  2. Это главный компонент при получении различных сплавов. Как правило, в металлургии это главный окислитель и модифицирующий элемент.
  3. Кремний часто используется для получения стекла и цемента.
  4. Он является незаменимым компонентом в производстве батарей.
  5. Кремний чаще всего используется как подручное средство для получения других простых веществ в лаборатории.

Плюсы и минусы кремния

Попробуем разобраться, в чем же заключаются преимущества и недостатки этого элемента? Как он вообще влияет на жизнь различных организмов?

Кремний необходим растениям для питания и роста, некоторым простейшим организмам — для правильного протекания процессов жизнедеятельности.

В организмах высших существ он играет важную роль (является одним из незаменимых микроэлементов), но помимо этого может вредить им (вызывать силикоз – отравление солями этого неметалла).

Незаменима его роль в промышленности и технике, металлургии. А вот медицинские показатели еще до конца не изучены, поэтому применять его для лечения различных заболеваний можно с осторожностью и только по рекомендациям врача.

Заключение

Кремний незаменим в химии и физике. Он играет важнейшую роль в биохимических реакциях организма человека. Правда избыток этого элемента может привести к хроническим болезням.

1001student.ru

Кремний, свойства кремния | Формулы и расчеты онлайн

Кремний, Вступление

СимволSi
Латинское названиеSilicon
Тип веществапростой химический элемент
ПервооткрывательЖ.Л. Гей-Люссак, Л.Ж.Тенар
Год открытия1824

Основные параметры кремния по таблице Менделеева

Атомный номер Z14
Атомная масса28.0855
Группа14
Период3
Принадлежность к группенеметаллы

Механические свойства кремния

Скорость звука2200 (Метр / Секунда)

Термодинамические свойства кремния

Агрегатное состояние при нормальных условияхтвердое тело
Точка плавления по Кельвину1687.15 (Кельвин)
Точка плавления по Цельсию1414 (°C)
Точка кипения по Кельвину276.05 (Кельвин)
Точка кипения по Цельсию2900 (°C)

Электрические свойства кремния

Тип электрической проводимостиполупроводник

Магнитные свойства кремния

Тип магнитной проницаемостидиамагнетик

Свойства атома кремния

Конфигурация электронного облака1s2 | 2s22p63s23p2
Радиус атома111 · 10 − 12 (Метр)
Число протонов p14
Число нейтронов n14
Число электронов e14
Массовое число A28
Атомная структура кремнияАтомная структура кремния

Химические свойства кремния

Валентность4

Распространенность кремния

Вселенная состоит из кремния на0.07%
Солнце состоит из кремния на0.09%
Мировой океан состоит из кремния на0.0001%
Человеческое тело состоит из кремния на0.026%

Вселенная

Вселенная состоит из кремния на0.07%

www.fxyz.ru

Кремний строение атома — Справочник химика 21

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]
    При возбуждении атом кремния переходит в состояние, li 2s 2/) 3s 3p а электронное строение его валентных орбиталей соответствует схеме  [c.56]

    По внутреннему строению карборунд представляет собой как бы алмаз, в котором половина атомов углерода равномерно заменена атомами кремния. Каждый атом углерода находится в центре тетраэдра, в вершинах которого расположены атомы кремния в свою очередь каждый атом кремния окружен подобным же образом четырьмя атомами углерода. Ковалентные связи, соединяющие все атомы в этой структуре, как и в алмазе, очень прочны. Этим объясняется большая твердость карборунда. [c.504]

    Важным для строения силикатов является то, что атомы кремния могут замещаться на близкие по размеру атомы алюминия. Поскольку алюминий трехвалентен, а кремний четырехвалентен, то при замене каждого атома кремния на атом [c.192]

    Атом кремния (тетраэдрическое строение) 109° 28  [c.19]

    Первые данные о строении силикатов были получены с помощью химических методов. На основании исследований учеными из школ И. И. Лемберга и В. И. Вернадского удалось сделать важные выводы о строении силикатов и выявить связь между строением и реакционной способностью отдельных групп силикатов. В алюмосиликатах удалось установить наличие стойких комплексов, переходящих при химических превращениях без изменения от одного соединения к другому. Однако в изучении силикатов наибольшие успехи были достигнуты в результате применения рентгеноструктурного и электронографического анализов, а также электронной микроскопии. К настоящему времени можно считать установленным, что основным элементом пространственной группировки кристаллических силикатов является группа 8104 в форме тетраэдра, в которой каждый атом кремния связан с четырьмя атомами кислорода. Связи 51 — О, играющие главную роль в силикатах, можно считать ковалентными. Однако полярность таких связей значительна. Как в 5102, так и в силикатах атомы кислорода располагаются вокруг атома кремния в вершинах тетраэдра, используя свою вторую валентность большей частью или на связь с другим атомом кремния или на связь с атомом металла. В последнем случае атомы кислорода переходят в состояние однозарядных отрицательных ионов. [c.59]


    Структура кварцевого стекла по своему общему характеру очень напоминает структуру кварца и других кристаллических форм двуокиси кремния. Почти каждый атом 51 находится в центре тетраэдра из четырех атомов кислорода, и почти каждый атом кислорода является общим для двух таких тетраэдров. Однако строение пространственной решетки из таких тетраэдров в стекле не столь упорядоченно, как в кристаллических формах двуокиси кремния, и лишь очень малые участки напоминают кварц, причем прилегающие к ним участки могут походить на кристобалит или тридимит, точно так же как жидкая двуокись кремния при температуре, превышающей температуру плавления кристаллических форм, несколько напоминает по своему строению соответствующие кристаллы. [c.530]

    Способность стекол и многих полимеров затвердевать в аморфном состоянии связана с особенностями их химического строения. Для стекол (силикатных, боратных и др.) характерно образование пространственной сетки связей. В случае силикатных стекол определяющим структуру фактором является способность оксида 5102 создавать простирающуюся по всему объему сетку связей, в которой каждый атом кремния соединен с четырьмя атомами кислорода, расположенными в вершинах тетраэдра (атом кремния в центре), а каждый атом кислорода соединен с двумя атомами кремния (мостиковый кислород). Тетраэдры имеют общие вершины. В кристаллическом кварце тетраэдры образуют регулярную периодическую структуру, а в стеклообразном сохраняется локальная упорядоченность, но периодичность и регулярность структуры пропадают. [c.195]

    Решение. Электронная конфигурация атом а кремния ls 2s 2p 3s-3p . Электронное строение его валентных орбиталей в невозбужденном состоя [ии может быть представлено следующей-графииеской схемо]  [c.55]

    Координационное число атома углерода в твердом СО. равно 2, а кремния в ЗЮ равно 4. Каждый атом кремния заключен в тетраэдр из 4 атомов кислорода. При этом атом кремния находится в центре, и по вершинам тетраэдра расположены атомы кислорода. Весь кусок кремнезема можно рассматривать как гигантскую молекулу формула которой (8Ю2) . Такое строение оксида кремния (IV) обусловливает его высокую твердость и тугоплавкость. [c.141]

    Причина такого различия строения двуокисей углерода и кремния заключается в неодинаковости радиусов атомов этих элементов. Атом углерода настолько мал, что может разместить около себя только два атома кислорода, предоставляя каждому по две единицы валентности, т. е. образуя молекулу 0 = = С = 0. Атом же кремния размещает 4 атома кислорода, предоставляя каждому по одной единице валентности, вторая же единица валентности атомов кислорода затрачивается на присоединение следующих атомов кремния. Поэтому и образуетс

www.chem21.info

КРЕМНИЙ (Si)

Свойства атома Кремний

Название

Кремний / Silicium

Символ

Si

Номер

14

Атомная масса (молярная масса)

[28,084; 28,086] а. е. м. (г/моль)

Электронная конфигурация

[Ne] 3s2 3p2; в соед. [Ne] 3s 3p3 (гибридизация)

Радиус атома

132 пм

Химические свойства Кремния

Ковалентный радиус

111 пм

Радиус иона

42 (+4e) 271 (-4e) пм

Электроотрицательность

1,90 (шкала Полинга)

Электродный потенциал

0

Степени окисления

+4, +2, 0, −4

Энергия ионизации

 786,0 (8,15) кДж/моль (эВ)

(первый электрон)

Термодинамические свойства простого вещества кремния

Плотность (при н. у.)

2,33 г/см3

Температура плавления

1414,85 °C (1688 K)

Температура кипения

2349,85 °C (2623 K)

Уд. теплота плавления

50,6 кДж/моль

Уд. теплота испарения

383 кДж/моль

Молярная теплоёмкость

20,16 Дж/(K·моль)

Молярный объём

12,1 см3/моль

Кристаллическая решётка простого вещества кремния

Структура решётки

кубическая, алмазная

Параметры решётки

5,4307 Å

Температура Дебая

645±5 K

Прочие характеристики Кремния

Теплопроводность

(300 K) 149 Вт/(м·К)

Номер CAS

7440-21-3

infotables.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *