Свинец теплопроводность – Плотность свинца, теплопроводность и удельная теплоемкость свинца Pb

Плотность свинца, теплопроводность и удельная теплоемкость свинца Pb

В таблице приведены физические свойства свинца: плотность свинца d, удельная теплоемкость Cp, температуропроводность a, теплопроводность λ, удельное электрическое сопротивление ρ в зависимости от температуры (при отрицательных и положительных температурах — в интервале от -223 до 1000°С).

Плотность свинца зависит от температуры — при нагревании этого металла его плотность снижается. Уменьшение плотности свинца объясняется увеличением его объема при росте температуры. Плотность свинца равна 11340 кг/м3 при температуре 27°С. Это довольно высокая величина, сравнимая, например, с плотностью технеция Tc и тория Th.

Плотность свинца намного больше плотности таких металлов, как олово (7260 кг/м3), алюминий (2700 кг/м3), хром (7150 кг/м3) и других распространенных металлов. Однако свинец не самый тяжелый металл. Если, к примеру, положить кусочек свинца в чашку с ртутью или с расплавленным таллием Tl, то он будет плавать на их поверхности.

Свинец начинает плавиться при температуре 327,7°С. При переходе его в жидкое состояние плотность свинца снижается скачкообразно и при температуре 1000 К (727°С) плотность жидкого свинца составляет уже 10198 кг/м3.

Удельная теплоемкость свинца равна 127,5 Дж/(кг·град) при комнатной температуре и при нагревании его до температуры плавления — увеличивается. Например, удельная теплоемкость свинца при температуре 280°С составляет величину около 140 Дж/(кг·град). Теплоемкость свинца в жидком состоянии при нагревании, наоборот — уменьшается и при температуре более 1000 К также равна 140 Дж/(кг·град).

Теплофизические свойства свинца в зависимости от температуры
t, °С →-223-173-7327127227327327,7527727
d, кг/м3115311143511340112451115211059106861043010198
Cp, Дж/(кг·град)103116,8123,2127,5132,8137,6142,1146,4143,3140,1
λ, Вт/(м·град)43,639,236,535,134,132,931,615,519,021,4
a·106, м235,729,124,324,322,821,520,19,912,715,0
ρ·108, Ом·м2,886,3513,6421,3529,8438,3347,9393,6102,9112,2

Среди множества распространенных металлов свинец обладает относительно невысокой удельной теплоемкостью при комнатной температуре. Для примера, теплоемкость стали равна 440…550, чугуна — 370…550, меди — 385, никеля — 444 Дж/(кг·град). Следует отметить, что теплоемкость тяжелых металлов в общем случае не высока. Отмечается такая зависимость: чем плотнее металл, тем ниже его удельная теплоемкость.

Температуропроводность твердого свинца при его нагревании уменьшается, а жидкого — увеличивается. Теплопроводность свинца равна 35,1 Вт/(м·град) при комнатной температуре. Свинец при нормальной температуре имеет довольно низкую теплопроводность — почти в 7 раз меньше теплопроводности алюминия и в 11 раз ниже теплопроводности меди. Зависимость теплопроводности свинца от температуры следующая: при его нагревании до температуры плавления теплопроводность свинца уменьшается, а теплопроводность жидкого свинца при повышении температуры — растет.

Источник:
В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.

thermalinfo.ru

Теплопроводность — свинец — Большая Энциклопедия Нефти и Газа, статья, страница 1

Теплопроводность — свинец

Cтраница 1

Теплопроводность свинца

примерно в два раза меньше теплопроводности железа.  [1]

Электро — и теплопроводность свинца невелики. Охлажденный до 7 5, он становится сверхпроводником; при — 258 7 С его сопротивление составляет 0 01311 и сш-см.  [2]

Действительно, из табл. 5 — 10 видно, что теплопроводность меди больше теплопроводности свинца в 11 раз, но в то же время твердость свинца по Бринеллю, наоборот, в 8 — 10 раз меньше, а потому термическое сопротивление омедненных образцов на целый порядок превышает сопротивление освинцованных образцов.  [4]

Следует учесть, что

теплопроводность свинца примерно в 1 5 раза больше, чем рассматриваемого сплава.  [5]

Летучесть увеличивается, начиная со 100, если в газовой среде содержатся водяные пары. Теплопроводность окиси бериллия приближается к теплопроводности свинца; при 100 она составляет 0 500, при 400 — 0 211, при 1000 — 0 0462 кал / см-сек — С.  [6]

При температуре ниже 7 2 К свинец находится в сверхпроводящем состоянии; однако если на него воздействовать внешним магнитным полем ( включив электромагниты 7 или 8), то он теряет свои сверхпроводящие свойства и переходит в обычное, так называемое нормальное состояние ( подробнее о сверхпроводимости см. гл. Одно из основных различий в свойствах свинца В сверхпроводящем и нормальном состояниях при достаточно низких темгГературах состоит в том, что

теплопроводность свинца в сверхпроводящем состоянии на два-три порядка меньше теплопроводности в нормальном состоянии. Это обстоятельство позволяет использовать свинцовый стержень как тепловой ключ: если вспомогательный электромагнит включен, то стержень находится в нормальном состоянии и хорошо проводит тепло; если же вспомогательный электромагнит выключен, то стержень находится в сверхпроводящем состоянии с ничтожной теплопроводностью.  [7]

Свинец — химически устойчивый металл с низкой механической прочностью, используется в химической промышленности для облицовки стальной аппаратуры и трубопроводов. Сварка свинца связана с некоторыми затруднениями, так как свинец имеет низкую температуру плавления ( 327 С) и образует тугоплавкую окись свинца ( РЬО) с температурой плавления 850 С. Низкая температура плавления и небольшая теплопроводность свинца позволяют применять для газовой сварки газы — заменители ацетилена: пропан-бутан, природный газ, городской газ, а также пары бензина и керосина.  [8]

Этот метод имеет то преимущество перед методом Рейна, что измерения дают непосредственно теплоемкость самого образца. Метод можно значительно усовершенствовать, применив тепловой ключ из чистого сверхпроводника, например свинца. При этом используется то обстоятельство, что

теплопроводность свинца в сверхпроводящем состоянии значительно ниже, чем в нормальном.  [9]

Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины примерно 0 5 мм и вырезают прокладку необходимых размеров и формы. Прокладка не должна быть толще 1 мм, так как теплопроводность свинца невысока.  [10]

Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины около 0 5 мм и вырезают прокладку необходимых размеров и формы. Мелкозернистой шкуркой зачищают обе ее стороны, устанавливают под транзисторы и туго сжимают узел винтами. Прокладка не должна быть толще 1 мм, так как

теплопроводность свинца невысока.  [11]

На свинцовые кольцевые концентрические рельсы треугольного сечения кладется медный или бронзовый шар, диаметр которого в 2 — 3 раза больше размера колеи. Как только экспериментатор отпускает шар, поставленный на рельсы, он начинает без всякой видимой причины катиться по рельсам, описывая безостановочно один круг за другим. Этот опыт производит большое впечатление, так как, на первый взгляд, причина движения шарика совершенно непонятна. Однако объяснение здесь очень несложное.

Теплопроводность свинца сравнительно невелика. Поэтому шарик, соприкасаясь с рельсами, нагревает места контакта.  [12]

Свинец пластичен и вязок, легко поддается обработке. Свежий разрез свинца на воздухе быстро тускнеет, так как свинец окисляется кислородом воздуха. Вследствие большой вязкости свинец трудно ломается. Механическая прочность свинца весьма невысокая. Он настолько мягок, что чертится ногтем, легко режется ножом, легко сгибается и рвется даже при сравнительно небольшом усилии.

Теплопроводность свинца между 0 и 50 равна 30 ккал мчас С, теплоемкость между О и 100 равна 0 031 ккал. С, коэфициент линейного расширения равен 0 0000276 — 0 0000293, уд. Температура плавления свинца 327 5, поэтому его очень легко можно расплавить в ковше на простом очаге и отлить в любую форму. Простота обработки является наиболее ценным свойством свинца по сравнению с другими материалами.  [13]

Свинец представляет собой синевато-белый металл, блестящий на поверхности свежего среза; однако на воздухе он быстро приобретает матовую сине-серую тусклую окраску. РЬ самый мягкий среди обычных тяжелых металлов, значительно мягче, чем олово. Вследствие незначительной твердости и большой тягучести свинец легко удается прокатывать в листы, однако ввиду незначительной прочности из него нельзя вытянуть слишком тонкую проволоку. В соответствии с данными Вартенберга пары свинца при 1870 одноатомны. Свинец кристаллизуется в кубической системе. Удельная теплоемкость его при 18 равна 0 0299, атомная теплоемкость 6 2, что находится в соответствии с правилом Дюлонга и Пти. Теплопроводность свинца относительно небольшая, она составляет лишь 8 5 % теплопроводности серебра. Удельная электропроводность при 18 равна с 4 8 — 10 — 4, что составляет 7 8 % удельной электропроводности серебра.  [14]

Свинец представляет собой синевато-белый металл, блестящий на поверхности свежего среза; однако на воздухе он быстро приобретает матовую сине-серую тусклую окраску. РЬ самый мягкий среди обычных тяжелых металлов, значительно мягче, чем олово. Вследствие незначительной твердости и большой тягучести свинец легко удается прокатывать в листы, однако ввиду незначительной прочности из него нельзя вытянуть слишком тонкую проволоку. В соответствии с данными Вартенберга пары свинца при 1870 одноатомны. Свинец кристаллизуется в кубической системе. Удельная теплоемкость его при 18Q равна 0 0299, атомная теплоемкость 6 2, что находится в соответствии с правилом Дюлонга и Пти. Теплопроводность свинца относительно небольшая, она составляет лишь 8 5 % теплопроводности серебра. Удельная электропроводность при 18 равна х4 8 — 10 — 4, что составляет 7 8 % удельной электропроводности серебра.  [15]

Страницы:      1    2

www.ngpedia.ru

Свинец Коэффициент теплопроводности — Энциклопедия по машиностроению XXL

Для проверки предлагаемого метода расчета температурных полей были изготовлены клинья с углами 6°, 8°30 и —-15°. С целью получения большого количества режимов клинья изготавливались из материалов с существенно различными коэффициентами теплопроводности (использовались парафин, эпоксидная смола,свинец и цинк). Все образцы изготавливались методом литья. В каждый из клиньев по его оси на расстоянии примерно 20—30 мм друг от друга заделывались по три термопары. Спаи и проволоки термопар заливались материалом образца в момент отливки самого образца. В свинцовых и цинковых образцах термопары изолировались специальной нитью из кремнеорганического волокна, пропитанного жидким стеклом. Участки выводов термопар из тела образцов заделывались в специальные латунные трубки диаметром 4 мм. Термопары изготовлялись из константановой проволоки диаметром 0,5 мм.  [c.346]
Измеренные данные для двух размеров сеток приведены на рис. 5.13 и 5.14. Сетки изготовлены из фосфористой бронзы, имеющей следующий состав олово 3,5—3,8 % фосфор 0,3—0,35 % железо 0,1% свинец 0,05 % цинк 0,3% остальное — медь. Плотность материала 8875 кг/м коэффициент теплопроводности 81,3 Вт/(м-К) удельная теплоемкость 0,435 кДж/(кг-К).  [c.120]

Наряду с газами и капельными жидкостями в качестве теплоносителей применяют жидкие (расплавленные) металлы, такие, как ртуть, натрий, калий, литий, висмут, галлий, свинец. Достоинством этих теплоносителей является то, что они имеют высокую теплопроводность, малую вязкость, высокую температуру кипения коррозионное воздействие на материал стенок каналов, по которым они перемещаются, — незначительное. Благодаря высокой теплопроводности жидкие металлы могут очень интенсивно отводить теплоту от поверхности нагрева. Их можно использовать при высоких температурах (700— 800° С) и в то же время при низких давлениях. Потери давления при движении жидких металлов в каналах находятся в приемлемых пределах. Многие из них имеют невысокую температуру плавления (для натрия, например, / д — 97,5° С) и могут без особых трудностей переводиться в жидкое состояние. Все эти качества делают их весьма перспективными теплоносителями. Применение жидких металлов в теплосиловых установках при определенных условиях позволяет повысить их коэффициент полезного действия.  [c.217]

Фрикционные сплавы обладают высоким коэффициентом трения и одновременно износостойки. Их используют для дисков, лент, колодок в различных тормозных устройствах. Сплавы имеют сложный состав. Например, сплав на основе железа содержит, помимо основного компонента, медь, свинец, графит, кремнезем, асбест, сернокислый барий. Асбест и кремнезем обеспечивают высокий коэффициент трения, графит предохраняет от истирания и износа, медь придает хорошую теплопроводность, свинец предохраняет от чрезмерного перегрева и способствует плавному торможению, сернокислый барий устраняет прилипаемость трущихся поверхностей. Коэффициент сухого трения сплава на железной основе по чугуну составляет 0,3—0,45, допустимая температура 550 °С. Прочность сплавов невелика, поэтому их используют в виде слоев толщиной 0,2—10 мм на стальной подложке.  [c.448]

Серьёзным затруднением, с которым приходится сталкиваться при сварке меди, является склонность швов к образованию кристаллизационных трещин, чему способствуют ее специфические теплофизические свойства большие коэффициенты теплового расширения и теплопроводности, значительная усадка при затвердевании и др. Примеси, присутствующие в меди, такие как кислород, сурьма, висмут, сера и свинец, образуют с металлом легкоплавкие эвтектики, которые скапливаются на границах кристаллитов и снижают их прочность. Поэтому ограничивают содержание примесей в меди, предназначенной для сварных конструкций (кислорода — до 0,03 % висмута — до 0,003 % сурьмы — до 0,005 % свинца — до 0,03 %).  [c.121]


Примечание. Метод измерения XI, погрешность измерения +5%. Исходными материалами служили свинец чистотой 99,99%, теллур, дважды перегнанный, в вакууме, и селен Марки. для выпрямителей. Синтез соединений проводился в откачанных кварцевых ампулах. Все образцы мелкокристаллические, получены прессованием при 400° С с последующим отжигом. Коэффициент теплопроводности составов с Jf>0,9 с лава равен коэффициенту теплопроводности чистого PbSe. Кроме того, реш иол Образцы легированы Pblj+Pb. I  [c.172]

Свинец применяется в серноьсислотной промышленности как об-кладочный материал для небольших емкостей (вакуум-сборники, мерники) и в сопряженных узлах аппаратов (рис. 7.14) для гомогенного свинцевания крышек аппаратов, как конструкционный материал для труб холодильников. Низкий коэффициент теплопроводности не позволяет эффективно использовать свинец в теплообменной аппаратуре, а высокая плотность приводит к утяжелению конструкций. Верхний температурный предел применения свинца 120 °С. Для защиты от коррозии оборудования применяется рольный свинец марки С2 (ГОСТ 3778-56).  [c.214]

Низкий коэффициент теплопроводности не позволяет эффективно использовать свинец в теплообменной аппаратуре, а высокая плотность (11,3 г см ) приводит к утяжелению конструкций. Верхний температурный предел применения свинца 120°С [19]. Низкая твердость свинца ограничивает его применение в условиях трения, эрозии и других механических воздействий. В этих случаях вместо свинца применяют гартблей (ГОСТ 1292—57).  [c.20]

Теплопроводность различных веществ характеризуется коэффициентом теплопроводности, обычно обозначаемым буквой Х. Он показывает, какое количество тепла (в ккал) передается в час через каждый квадратный метр площади поперечного сечения данного материала на длину 1 м при разности температур 1°С на этой длине. Коэффициент теплопроводности имеет размерность ккал1м ч град. Из металлов хорошей теплопроводностью обладают серебро (Х=360) и медь (л=340), худшей — сталь ( 1 = 40) и свинец (Я=30). Для сухой древесины > =0,15, для асбеста > =0,10. Эти данные приведены для средней температуры 20° С.  [c.39]

Свинец относится к группе легкоплавких металлов, так как температура плавления его 327 С. Он характеризуется низкой прочностью и высокой пластичностью. Чистый свинец имеет предел прочности при растяжении 1,4 кПмм , модуль упругости 1500—1700 кГ/мм . Коэффициент теплопроводности свинца составляет 29—30 ккал/(м Ч — град). Большой удельный вес свинца (11,34 Г см ) и низкая прочность затрудняют его применение в качестве конструкционного материала.  [c.114]

Антифрикционные пористые материалы изготавливают на основе порошков железа или меди с пропиткой жидкой смазкой (маслом) или с добавками твердой смазки (графит, свинец, дисульфид молибдена, сернистый цинк). Данные материалы обладают высокими триботехническими свойствами, хорошей прирабатываемостью, высокой теплопроводностью, достаточной вязкостью при ударной нагрузке, обеспечивают низки1 коэффициент трения.  [c.134]

Не менее разнообразны и наполнители — ацетон, вода, ртуть, индий, цезий, калий, цатрий, литий, свинец, серебро, висмут и разнообразные неорганические соли. Какие выбрать материалы Ответ прежде всего зависит от заданных выходных параметров тепловой трубы и от температурного диапазона, в котором она будет эксплуатироваться. При рассмотрении принципа работы тепловых труб уже отмечалось, как зависят их характеристики от физических свойств выбранных конструкционных материалов и наполнителей. В частности, цри выборе наполнителя целесообразно взять материал с высокой теплотой парообразования и теплопроводностью, с низким значением коэффициента вязкости в жидком и парообразном состоянии, с большим поверхностным натяжением, с хорошей смачиваемостью материала, из которого изготовлена капиллярная структура, и, наконец, с подходящей температурой плавления Л. 16].  [c.70]


mash-xxl.info

Свинец теплопроводность — Справочник химика 21

    Вследствие низкой температуры плавления свинец можно применять при температурах порядка 150—200° С при более высокой температуре свинец начинает постепенно терять прочность и коррозионную стойкость. Низкая теплопроводность не позволяет использовать свинец в теплообменной аппаратуре, а высокий удельный вес приводит к увеличению веса конструкций. Плохие литейные свойства свинца не позволяют применять его для отливок. Свинец также склонен к рекристаллизации. [c.261]
    Коэффициент теплопроводности газов находится в пределах 0,005—0,15 ккал м-ч-град), жидкостей 0,08—0,6 ккал м-ч-град). Для твердых тел значения коэффициентов теплопроводности лежат в более широких пределах для теплоизоляционных материалов 0,01—0,1 ккал м-ч-град), Для металлов 2—360 ккал м-ч-град). Коэффициенты теплопроводности металлов, применяемых в химическом машиностроении, имеют следующие значения серебро — 360, медь — 320, алюминий — 170, чугун — 54, никель — 50, углеродистая сталь — 39, свинец — Ю, нержавеющая сталь — 12 — 20 ккал м-ч-град). [c.122]

    Нагревание ртутью и жидкими металлами. Для нагрева до температур 400—800 С и выше в качестве высокотемпературных теплоносителей могут быть эффективно использованы ртуть, а также натрий, калий, свинец и другие легкоплавкие металлы и их сплавы. Эти теплоносители отличаются больщой плотностью, термической стойкостью, хорошей теплопроводностью и высокими коэффициентами теплоотдачи. Однако жидкие металлы и их сплавы характеризуются очень малыми значениями критерия Прандтля (Рг =s 0,07). В связи с этим коэффициенты теплоотдачи от жидких металлов следует рассчитывать по специальным формулам .  [c.320]

    Литий по мягкости приблизительно такой же, как свинец, натрий — как воск. К, НЬ и Са — еще мягче. Щелочные металлы обладают высокой сжимаемостью, алектро- и теплопроводностью. Литий-самое легкое из твердых веществ, существующих при комнатной температуре. [c.319]

    Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода). По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники —серебро и медь, затем золото, алюминий, железо и худшие —свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. [c.297]

    Олово и свинец проявляют уже все свойства металлов металлический блеск, высокую электро- и теплопроводность, пластичность. Прочность соединений с водородом у элементов рассматриваемого семейства так же резко падает с возрастанием порядкового номера элемента, как и в ранее рассмотренных семействах. [c.117]


    Коэффициент теплопроводности твердых тел. Коэффициенты теплопроводности твердых те/[ значительно разнятся друг от друга. Так, например, для некоторых металлов, применяемых в химическом аппарато-строении, А имеет следующие средние значения (в ккал м-час °Су. медь 330 алюминий 175 чугун 54 углеродистая сталь 40 свинец 30 нержавеющая сталь 20. Теплопроводность металлов сильно зависит от их состава и содержания примесей. [c.282]

    При температурах ниже 7 К в лабораторной технике задача снижения притоков теплоты по токовводам может быть решена достаточно просто для подводящих проводов можно использовать проволоку с малой теплопроводностью, например константан, покрытый снаружи тонким слоем свинцовой полуды, либо сплавом, содержащим 50% РЬ и 50%, Sn, Ниже 7 К свинец становится сверхпроводящим, теплопроводность же проволоки остается малой. [c.257]

    В качестве расплава употребляют некоторые металлы (свинец, висмут, кадмий, олово и др.) и их сплавы, соли — хлориды, карбонаты и др. — или многокомпонентные солевые расплавы, а также шлаковые (оксидные) расплавы [405]. Метал- лические расплавы обладают высокой теплопроводностью, ма- лой вязкостью, но они интенсивно окисляются и относительно. дороги. Солевые расплавы не имеют основного недостатка металлических— интенсивной окисляемости, но по сравнению с металлами обладают меньшей теплопроводностью, а некоторые— высокой летучестью и термической нестабильностью, что осложняет сепарацию и регенерацию расплавов. Относительно дешевые шлаковые расплавы характеризуются высокими тем пературами плавления, не слишком высокой вязкостью, повышенным агрессивным воздействием на конструкционные материалы, поэтому их применяют редко. [c.191]

    Процессу Космос свойствен ряд недостатков высокое содержание СО и СО2 в продуктах пиролиза, относительно низкая теплопроводность солевой пленки расплава, значительная кратность циркуляции расплава и повышенный расход пара. Эти недостатки могут быть устранены, если в качестве расплава использовать металлы или смеси на их основе (например, свинец и смеси на его основе). Движение расплава осуществляется в дисперсионно-кольцевом режиме [413]. На поверхности реактора образуется пленка металлического расплава толщиной см, которая защищает поверх- [c.194]

    Медь не подходит по своим химическим свойствам, свинец слишком мягок. Можно применять стекло, если принимаются меры предосторожности против его поломки и если невысокая теплопроводность стекла не мешает проведению опыта. Трубка, идущая к реакционной колбе, представляет собой продолжение спирали. [c.127]

    Свинец — мягкий металл, имеющий невысокую температуру плавления (327,4 °С), низкую теплопроводность, высокую плотность (11,3) и плохие литейные свойства. [c.212]

    Весьма немногие материалы устойчивы к воздействию восстановительных кислот, применяемых в производстве искусственного волокна на основе целлюлозы практически используются гуммированная сталь, свинец и углеродистые материалы. Для теилообменников, стенки трубчатых элементов которых должны обладать высокой теплопроводностью, применение указанных материалов невозможно. Трубные пучки из высоколегированных сталей, титана и сплавов на основе никеля обладают недостаточной коррозионной стойкостью, а применение в качестве конструкционных материалов циркония, ниобия, тантала и благородных металлов экономически нецелесообразно. [c.153]

    Свинец имеет большую плотность 11,4 г/сж , малую теплопроводность и низкую температуру плавления 327 С. Для изготовления труб и фасонных частей применяют свинец марки С2 (ГОСТ 3778—65). [c.37]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н.

www.chem21.info

Теплопроводность, теплоемкость и плотность олова Sn

Теплопроводность, теплоемкость и плотность олова зависят от температуры и структуры этого металла. При атмосферном давлении олово имеет две кристаллические модификации: β-олово, стабильное выше температуры 19°С и низкотемпературное α-олово. Обе модификации способны длительное время существовать в метастабильном переохлажденном и, соответственно, перегретом состояниях.

Плотность олова при температуре 20°С имеет значение 7310 кг/м3. Плотность олова (или его удельный вес) намного меньше плотности свинца и немногим меньше плотности стали, однако олово намного тяжелее алюминия. При нагревании олова его плотность, как и у других металлов, снижается. Олово относится к легкоплавким металлам, и его несложно расплавить даже на обычной кухне. Плотность жидкого олова при температуре 250°С принимает значение 6980 кг/м3.

Удельная теплоемкость олова равна 230 Дж/(кг·град) при температуре 20°С. Температурная зависимость теплоемкости олова является типичной для простых металлов. Удельная теплоемкость олова слабо зависит от температуры и при его нагревании увеличивается. Значение теплоемкости жидкого олова имеет постоянную величину 255 Дж/(кг·град) при температурах выше 523 К. При этом объемная теплоемкость этого металла снижается из-за уменьшения его плотности. Например, при температуре 773 К удельная (объемная) теплоемкость олова в жидком состоянии равна 1,73 МДж/(м3·град).

Теплопроводность олова имеет среднее значение среди распространенных металлов. Она сравнима с теплопроводностью железа или углеродистой стали, при этом больше теплопроводности чугуна. У β-олова теплопроводность носит электронный характер, и при температуре 20°С коэффициент теплопроводности олова равен 65 Вт/(м·град), что в 6 раз меньше теплопроводности меди при этой же температуре. Повышение температуры олова приводит к снижению его теплопроводности. Например, при температуре 523К (250°С) теплопроводность жидкого олова становится равной 34,1 Вт/(м·град).

В таблице представлены также данные о температурной зависимости коэффициента температуропроводности, кинематической вязкости и числа Прандтля жидкого олова в интервале температуры 523-773 К.


Следует также отметить, что при атмосферном давлении олово плавится при температуре 505 К (или 232°С) и его теплота плавления составляет 52 кДж/кг. Температура кипения олова равна 2267°С, а теплота испарения олова имеет значение 3014 кДж/кг. Термоэдс олова в твердом состоянии отрицательна по абсолютной величине и растет с повышением температуры.

Источник:
Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967 — 474 с.

thermalinfo.ru

Свинец, свойства атома, химические и физические свойства

Свинец, свойства атома, химические и физические свойства.

 

 

 

Pb 82  Свинец

207,2(1)     1s2s2p3s3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s6p2

 

Таллий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 82. Расположен в 14-й группе (по старой классификации — главной подгруппе четвертой группы), шестом периоде периодической системы.

 

Общие сведения

Свойства атома

Химические свойства

Физические свойства

Таблица химических элементов Д.И. Менделеева

 

 

Общие сведения

 
НазваниеСвинец/ Plumbum
СимволPb
Номер в таблице82
ТипМеталл
ОткрытИзвестен с древних времен
Внешний вид и пр.Тяжёлый металл серебристо-серого цвета с синеватым оттенком
Содержание в земной коре0,00099 %
Содержание в океане3,0×10-9 %

Свойства атома

 
Атомная масса (молярная масса)207,2(1) а. е. м. (г/моль)
Электронная конфигурация1s2s2p3s3p6 3d10 4s4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p2
Радиус атома175 пм

Химические свойства

 
Степени окисления+4, +2, 0
Валентность+2, +4
Ковалентный радиус147 пм
Радиус иона(+4e) 84 (+2e) 120 пм
Электроотрицательность2,33 (шкала Полинга)
Энергия ионизации (первый электрон)715,2 кДж/моль (7,41 эВ)
Электродный потенциал-0,126 В, 0,80 В

Физические свойства

Плотность (при  нормальных условиях)11,3415 г/см3
Температура плавления327,46 °C (600,61 K)
Температура кипения1749 °C (2022 K)
Уд. теплота плавления4,77 кДж/моль
Уд. теплота испарения177,8 кДж/моль
Молярная теплоёмкость26,65 Дж/(K·моль)
Молярный объём18,3 см³/моль
Теплопроводность (при 300 K)35,3 Вт/(м·К)
Электропроводность в твердой фазе4,8х10См/м
Сверхпроводимость при температуре
Твёрдость1,5 по шкале Мооса
Структура решёткикубическая гранецентрированная
Параметры решётки4,950 Å
Температура Дебая88 К

 

Таблица химических элементов Д.И. Менделеева

 

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

 

Таблица химических элементов Д.И. Менделеева

 

карта сайта

свинец атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле свинца свинец 
сколько электронов в атоме свойства металлические неметаллические термодинамические 

 

 

Коэффициент востребованности 152

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Существует и другой способ перемещения тепла (теплопередачи). Он возможен не только в подвижной среде (жидкости и газе), но и в твердых телах. Тепло может перемещаться по телу и через него к другому предмету без перемещения частей этого тела относительно друг друга, т.е. без перемещения вещества. Такой способ носит название теплопроводности.

Различные вещества по-разному проводят тепло. Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным теплоизолятором.

Таблица теплопроводности
(сравнение чисел характеризует относительную скорость передачи тепла каждым материалом)

Вещество Коэффициент
теплопроводности
Серебро 428
Медь 397
Золото 318
Алюминий 220
Латунь 125
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77
Вода 0,6
Сосна 0,1
Войлок 0,057
Воздух 0,025

physica-vsem.narod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *