Таблица прогрева бетона в зимнее время: Прогрев бетона в зимнее время технологическая карта

Содержание

Прогрев бетона в зимнее время технологическая карта

Требования СНиП 3-03-01-87 устанавливают нормативы по прогреву бетона в зимнее время, который проводится при условии, что показатели суточной минимальной температуры воздуха составляют менее 0°С. Технологический прогрев бетона в зимнее время необходим для недопущения замораживания жидкого бетонного раствора и предотвращения появления льда в конструкции и вокруг арматурных стержней.

Схема расположения греющего кабеля в бетоне

Вода в растворе, как элемент реакции гидратации, в твердом состоянии не способна активировать и начинать ускорять затвердевание бетона. Скорее наоборот – лед начинает разрушать материал, так как увеличивает внутреннее давление в конструкции. При повышении температуры процесс гидратации продолжается, но качество бетонного элемента и его долговечность теряются. Поэтому были разработаны методы прогрева бетона, основы которых описаны ниже. Все способы прогрева бетона в зимнее время постоянно и активно эксплуатируются, но какой из них будет наиболее эффективен для конкретного строительного объекта, нужно выяснять на месте.

Прогрев ИФ излучением

Эта технология прогрева бетона основана на действии направленного инфракрасного излучения. То есть, подогреваемый материал обрабатывается именно в том месте, на которое направлены лучи. Оборудование устанавливается в месте, где будет осуществляться нагрев, опалубка при этом не мешает. Можно обогревать и саму поверхность бетона, а мощность излучения регулируется изменением расстояния между инфракрасной установкой и прогреваемым объектом. На практике инфракрасный прогрев бетона применяется на небольших объектах.

График воздействия инфракрасного излучения

Инфракрасный подогрев бетона – это высокоэффективная технология, оборудование просто в использовании, энергетические затраты небольшие. Также из достоинств следует отметить мобильность оборудования.

Недостатки – дороговизна оборудования, а также то, что одной установкой невозможно прогреть бетон зимой, если объект большой или объемный. То есть, может потребоваться несколько установок. Также при работе излучающего оборудования в осенний период влага слишком быстро испаряется, что отрицательно сказывается на качестве и надежности объекта. С этим явлением можно бороться, что вызывает дополнительные финансовые и временные затраты. Самый доступный и экономичный вариант — полиэтиленовая пленка.

Провод ПНСВ в строительстве

Технологический прогрев бетона проводом ПНСВ несложен. Перед заливкой раствора в опалубку или форму туда по рассчитанной заранее схеме укладывается греющий кабель ПНСВ. На схему от понижающего трансформатора подается напряжение питания, вследствие чего бетонная смесь равномерно и постоянно прогревается.

Такая схема прогрева бетона имеет свои преимущества: это не слишком высокий расход электроэнергии и низкая себестоимость способа – расходы идет только на провод пнсв и трансформатор. Например, схема подключения с трансформатором мощностью 80 кВт может прогреть площадь до 90 м

3.

Схема подключения провода ПНСВ

Недостаток — длительная и трудозатратная подготовка к прогреву поверхности: необходимо правильно уложить (на нужной глубине) и подключить кабель (пример показан на схеме).

Прогрев электродами

Что значит прогрев бетона электродами? Провод ПНСВ заменяется проволочными или арматурными электродами Ø 8-12 мм. Такой прогрев бетона в зимнее время электродами подойдет только для заливки вертикальных или объемных объектов, так как электроды для прогрева бетона втыкаются в раствор вертикально, и на них так же, как и на схему из провода ПНСВ, подается напряжение от понижающего трансформатора. Расстояние между электродами — 0,6-1 м.

Схема подключения прогрева бетона электродами

Преимущества: простота монтажа. Недостатки: высокое энергопотребление и дороговизна схемы, так как все электроды остаются в конструкции.

Греющая опалубка (термос)

Метод греющей опалубки — это обогрев бетона специальными нагревательными элементами. Расчеты при таком обогреве показывают, что количество тепла в растворе должно быть не меньше количества тепловых потерь при остывании конструкции за все время, которое нужно для получения окончательной твердости бетона.

Схема греющей опалубки

Нагревательный элемент — электрический пленочный. Преимущества этого способа — возможность прогрева одновременно нескольких площадей или одной большой поверхности, низкое энергопотребление и мобильность. Недостаток греющей опалубки — высокая стоимость конструкции.

Индукционный прогрев

Такой электропрогрев бетона в зимний период основан на работе простой индукционной катушки. Метод индукции для прогрева используется в конструкциях с замкнутым контуром, где длина объекта больше размера его сечения. Индукционный прогрев должен проводиться с подключением понижающего трансформатора на 12-36 В.

Схема индуктора

Витки индуктора выкладываются заранее по шаблону, затем в проделанные в растворе пазы укладывается кабель, и заливается бетонная смесь. После подключения устройства температура бетона должна контролироваться, и по достижении максимального значения индуктор выключается. Если этого недостаточно, то дальнейший способ электропрогрева — метод термоса. Также можно переключить индуктор в импульсный режим.

Преимущества такого метода: равномерный прогрев всей конструкции, экономия на арматуре и электродах, низкое энергопотребление (расход электроэнергии на 1 м³ — до 150 кВт/ч).

Недостатки: маленькая площадь прогрева одним устройством. При увеличении размеров индуктора увеличивается потребление электроэнергии.

Прогрев термоматами

Способ, как прогреть бетон термоэлектроматами, хорош тем, что сам прибор работает автономно, и его работу не нужно контролировать. Тероматы потребляют очень мало электроэнергии – меньше, чем при методе прогрева проводом или индуктором, а результат лучше, так как при равномерном обогреве раствора нет локальных зон перегрева, образование которых может привести к появлению микротрещин в конструкции.

Схема термоэлектромата

Преимущества обогрева бетонного раствора термоэлектроматами — простота применения устройств, также легко подключаемый термомат – это многоразовое оборудование, которое может прослужить до 12 месяцев при активной постоянной работе. Следующее достоинство — высокое качество результатов вследствие большой глубины прогрева: за одну рабочую смену бетон достигает 70-80 % своей нормативной марочной прочности.

Недостаток – термомат дорого стоит, вследствие этого на рынок выбрасывается много поддельного некачественного оборудования.

Тепловой шатер

Этот способ известен давно, так как является самым первым из всех существующих методом прогрева бетона в зимнее время. Состоит он в том, что над бетонной конструкцией обустраивается каркас из любого материала, например, из деревянных брусков или металлических труб, и этот каркас обтягивается брезентом или другим рулонным материалом. Каркас можно сделать силами одного рабочего.

Схема теплового шатра

Внутри получившегося шатра устанавливается любое обогревательное устройство, например, газовая пушка. Это может быть также электрическая или дизельная пушка, и даже примитивный костер, который и будет обогревать объем сооруженного шатра.

Преимущества этого способа очевидны – дешевизна, эффективность, минимальные энергозатраты.

Из недостатков – только один: таким способом можно прогреть небольшой объем бетона.

Расчет прогрева бетона

Чтобы рассчитать длину провода ПНСВ для одной секции, а также требуемое количество таких секций для определенной бетонной конструкции, учитываются технические характеристики самого провода и рабочее напряжение понижающего трансформатора. Например, при напряжении на трансформаторе 220В длина одной секции провода ПНСВ сечением 1,2 мм будет равна 110 метров. При уменьшении напряжения происходит пропорциональное сокращение длины отрезка кабеля в секции.

Если взять средний расход провода 50-60 м/м³ для одной обогревательной секции, то излучаемое тепло может прогреть бетонную массу до 80°С.

Схема размещения электродов в бетоне

Чтобы начать расчет эмпирической зависимости среднего значения температуры бетона при остывании от площади поверхности, необходимо учитывать следующие факторы и расчеты:

  1. Среднегодовой прогноз погоды на зимний период в регионе за несколько лет. Также берется в расчет прогнозируемое значение среднего температурного показателя воздуха за текущий зимний период.
  2. Рассчитывается модуль рабочей прогреваемой поверхности, и, исходя из этих расчетов, определяется соответствующая термосная выдержка раствора.
  3. По установленной формуле рассчитывается средняя температура конструкции за время ее охлаждения.
  4. Требуется информация о температуре доставляемой готовой бетонной смеси и ее экзотермических характеристиках. Эти данные можно узнать у завода-изготовителя.
  5. Согласно установленным формулам определяются тепловые потери при транспортировке смеси и ее разгрузке.
  6. Также необходимо определить температуру раствора с начала его укладки с учетом отдачи тепла на прогрев опалубки и арматуры.
  7. Опираясь на нормативные требования прочности бетона, рассчитывают время охлаждения раствора.

Такой способ расчетов работает при прогнозировании времени застывания бетона, учета тепловых потерь при заливке смеси, и излучения тепла с рабочей поверхности, но такие расчеты являются приблизительными.

Прогрев бетона в зимнее время по СНИПу: технологическая карта, виды

Если вам требуется залить фундамент или провести иные подобные работы при отрицательных температурах, то без обогревательных процедур не обойтись. Причем они должны проводиться по строительным нормативам. О том, как производится  прогрев бетона в зимнее время по СНИПу №3_03_01-87, вы сейчас и узнаете.

Подготовка к прогреву

Для чего нужно подогревать бетон

Как уже было отмечено, заливка бетона производится не только летом, но также и зимой. Разница заключается в том, что в зимний период цементному составу требуется подогрев, цена которого может быть довольно высокой.

Данный процесс необходим по следующим причинам:

  • при отрицательных температурах бетон не набирает прочности;
  • происходит разрушение структуры материала, из-за чего на нем образуются деформированные участки, и он в итоге становится менее долговечным.

Совет! Удалить выступающие неровности вам поможет резка железобетона алмазными кругами. При этом обязательно нужно применять защитные средства в виде респиратора и специальных очков. Что касается небольших впадин, то для их зачистки потребуется алмазное бурение отверстий в бетоне и последующее заполнение углублений  цементным раствором.

Указанных процессов можно избежать, но для этого потребуется оборудование для прогрева бетона в зимнее время. Обойтись без него можно лишь в том случае, если до появления низких температур состав  успел набрать определенную прочность. Для удобства данные внесены в таблицу:

Состав маркиПроцент от проектного значения
М-150Не ниже 50%
М-200Не ниже 40%
М-300Не ниже 40%
М-400Не ниже 30%
М-500Не ниже 30%

Виды прогрева бетона

СНиП под номером 3_03_01-87 устанавливает, какие способы прогрева бетона в зимнее время должны применяться для тех или иных сооружений.

К данным методам относится:

  • термос;
  • предварительный разогрев состава;
  • обогрев в опалубке;
  • индукционный способ;
  • электродный прогрев;
  • использование нагревательных проводов;
  • термос с противоморозными компонентами;
  • инфракрасный обогрев.

Мы рассмотрим наиболее распространенные из них.

Обогрев бетона нагревательным проводом

Чтобы свести к минимуму время прогрева бетона в зимнее время применяется специальный нагревательный провод – ПНСВ.

Его составными частями являются:

  1. стальная жила, состоящая из одной проволоки;
  2. изоляционный слой, выполненный из полиэтилена или ПВХ.

Данный метод обогрева основан на использовании трансформаторных подстанций, которые сильно нагревают провода. От них происходит передача тепла бетонному составу. Следует отметить, что такой способ весьма удобен, поскольку он позволяет регулировать уровень нагрева в зависимости от погодных условий.

Чтобы смонтировать подобную систему потребуется технологическая карта прогрева бетона в зимнее время. Ее обычно составляет специалист-энергетик, являющийся сотрудником строительной организации. Также существуют  типовые образцы такого документа.

Данная карта определяет количество и расположение станций прогрева, а также порядок размещения и число нагревательных проводов. Как показывает расчет прогрева бетона в зимнее время, для нагревания 1м³ раствора требуется в среднем 50-60 метров кабеля.

Часть технологической карты

Реализуется данная технология следующим образом:

  1. нагревательный провод размещается внутри возводимой конструкции — делается это так, чтобы проводники размещались равномерно, не касались опалубки, не выходили за края бетона и не соприкасались друг с другом;

На фото — укладка провода

  1. к греющему проводу припаиваются холодные концы – после этого они выводятся за пределы зоны нагрева;

Присоединение и вывод холодных концов

  Совет! Чтобы в зоне пайки сохранялось тепловое поле, следует обернуть данную область фольгой.

  1. выводы проводов подключаются к трансформаторному оборудованию в соответствии с предписаниями, содержащимися в технологических картах:
  2. собранная электрическая цепь проверяется мегаомметром;
  3. в созданную систему подается напряжение и начинается процесс обогрева, для правильного проведения которого потребуется температурный график прогрева бетона в зимнее время, содержащийся в технологической карте.

Пример графика прогрева

Способ «термос»

Метод «термос»

Как понятно из названия, данный метод предназначен не для передачи, а для сохранения тепла. Он заключается в защите бетона с помощью теплоизоляционных материалов, размещаемых снаружи него. Благодаря ним применяемая смесь медленнее теряет тепло и быстрее приобретает прочность (узнайте здесь, как использовать трансформатор прогрева бетона при работе в зимний период).

Преимущество рассматриваемого способа заключается в его доступной стоимости, ведь в качестве утеплителя могут быть использованы даже обычные опилки. Однако следует отметить, что одного лишь пассивного сохранения тепла может оказаться недостаточно. В этом случае придется вдобавок к нему применять дополнительные методы прогрева бетона в зимнее время.

Инфракрасный прогрев бетонных конструкций

Применение инфракрасных излучателей

Этот способ основан на использовании инфракрасных нагревателей. Они устанавливаются таким образом, чтобы исходящее от них излучение было направлено на открытую бетонную поверхность или на опалубку. Передаваемая ими энергия вызывает нагрев цементного раствора и его ускоренное отвердение.

Совет! Не используйте данный метод для прогревания конструкции, имеющей большой объем.  Инфракрасные лучи не смогут нагреть ее равномерно, что приведет к уменьшению прочности материала. Поэтому для массивных изделий лучше использовать иные виды прогрева бетона в зимнее время.

Способ прогреваЦели
Инфракрасное облучение железобетонных изделий·        прогревание замерзшего грунтового основания, арматуры и опалубки, а также удаления с них снега и льда;·        ускорение процессов отвердения цементной смеси;

·        предварительное прогревание мест соединения сборных бетонных элементов и интенсификация процесса затвердения состава, используемого для заделки своими руками стыков плит;

·         прогрев конструкций, недоступных для утепления иными методами.

 

Индукционный нагрев

Принцип индукционного нагревания

В данном методе в целях получения тепла используется явление электромагнитной индукции.  С ее помощью энергия электромагнитного поля видоизменяется и становится тепловым излучением, которое передается обрабатываемому материалу. Указанное превращение происходит в стальной опалубке или на арматуре.

Инструкция по реализации данного способа устанавливает, что он может быть использован только в тех конструкциях, которые имеют замкнутый контур. Кроме того, у них должна быть густая арматура, у которой коэффициент армирования составляет свыше 0,5. Еще одно необходимое условие – наличие металлической опалубки или возможности обмотать конструкцию кабелем в целях создания индуктора.

Вывод

При проведении железобетонных работ в морозную погоду нужно обязательно использовать прогрев. Без него полученная в итоге конструкция будет менее прочной и долговечной (узнайте также как работает трансформатор для прогрева бетона).

К наиболее распространенным способам нагрева относится использование нагревательных проводов, инфракрасных излучателей, применение электромагнитной индукции, а также теплоизоляции. Подробнее о том, как осуществляется прогрев бетона в зимнее время, вам расскажет видео в этой статье.

электропрогрев, при какой температуре нужно греть СНиП, обогрев

Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.

Технологическая карта и способы прогрева бетона

Прогревать сварочным аппаратом

Этот метод прогрева предполагает применение следующих материалов:

  • кусков арматуры;
  • лампы накаливания и градусника для измерения температуры.

Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.

Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.

Инфракрасный метод

Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.

Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.

Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.

Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.

Клей для газобетона состав и особенности применения указаны в статье.

Как выглядит фундамент из фбс для дома из газобетона, можно узнать из данной статьи.

Каков вес газобетонного блока объёмом 1м3, указано в данной статье здесь: https://resforbuild.ru/beton/gazobeton/ves-gazobetonnogo-bloka.html

Какие существуют плюсы и минусы дома из газобетона, указано в данной статье.

Индукционный метод

Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.

После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.

Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.

Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.

Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.

Применение трансформаторов

Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.

Конструкция этого кабеля предусматривает два элемента:

  • однопроволочная жила круглой формы, выполненная из стали;
  • изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.

Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.

В данной статье описаны характеристики газобетона и пенобетона.

Газобетон d600 характеристики и особенности применения указаны в данной статье.

Газобетон размеры и цены указаны в данной статье здесь: https://resforbuild.ru/beton/gazobeton/razmer-bloka-gazobetona.html

Какие производители автоклавного газобетона существуют, указано в данной статье.

Выполняется такая манипуляция по следующей инструкции:

  1. Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
  2. При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
  3. так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.

Таблица 1 – Характеристика проводов марки ПНСВ

1Напряжение переменного тока, В380
2Длина секции кабеля на напряжение 220 В:
– ПНСВ1,0 мм, м80
– ПНСВ1,2 мм, м110
– ПНСВ1,4 мм, м140
3Удельная мощность тепловыделения кабеля:
– для армированных установок, Вт/п.м.30-35
– для неармированных установок, Вт/п.м.35-40
4Напряжение питания рекомендуемое, В55-100
5Среднее значение сопротивления жилы:
– ПНСВ1,2 мм, Ом/м0,15
– ПНСВ1,4 мм, Ом/м0,10
6Параметры метода:
– Мощность удельная, кВт/м31,5-2,5
– Расход провода, п. м./м350-60
– Цикл термосного выдерживания конструкций, суток2-3

Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.

Использование кабеля

Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.

Весь процесс протекает по следующей схеме:

  1. Ведется установка кабеля на бетонное основание перед заливкой раствора.
  2. Все зафиксировать, используя крепежные детали.
  3. Будьте внимательны во время установки кабеля и го эксплуатации, чтобы на его поверхности не возникли повреждения.
  4. Выполнить подключение кабеля в низковольтный электрический шкаф.

Противоморозные добавки

При добавлении противоморозных добавок бетон способен противостоять самым агрессивным атмосферным осадкам. Входящие в состав такой смеси компоненты могут быть самые различные, но роль главного отведена антифризу. Это жидкость, которая не позволяет воде замерзать.

Если необходимо взвести конструкции из железобетона, то в составе смеси должен находиться нитрит натрия и формат натрия. Главной особенностью противоморозных смесей остается сохранение антикоррозийных и физико-химических свойств при низком температурном режиме. 

При возведении товарного бетона, производстве бордюров необходимо задействовать смесь, в составе которой имеется хлорид кальция. Этот компонент позволяет добиться быстрой скорости затвердения, устойчивости к низкому температурному режиму.

Идеальной противоморозной добавкой остается такое химическое вещество, как поташ. Оно очень быстро растворяется в воде, при этом отсутствует коррозия. Если вы будет применять поташ при прогреве бетона зимой, то удастся сэкономить на строительных материалах.

Если вы используете противоморозные добавки, то очень важно придерживаться всех норм безопасности. Например, не стоит задействовать бетон с такими компонентами, когда конструкция расположена под напряжением, возводятся монолитные дымовые трубы.

СНиП

Все мероприятия по монтажу и строительству нужно выполнять в соответствии с установленными нормами. Процесс бетонирования в зимнее время не считается исключением. Прогрев бетонной конструкции при низких температурах воздуха происходят согласно следующих документов:

  • СНиП 3.03.01-87 – Несущие и ограждающие конструкции
  • СНиП 3.06.04-91 – Мосты и трубы

На видео – прогрев бетона в зимнее время, технологическая карта:

Несмотря на то, что представленная документация лишь косвенно затрагивает тему, связанную с прогревом бетона, в ней содержатся определенные разделы, в которых имеется технология заливки бетонного раствора в морозное время года.

Расчет времени

При расчете прогрева бетона необходимо принимать во внимание таки факторы, как тип конструкции, общую площадь обогрева, объем бетона и электрическую мощность.

Во время обогревательных работ с бетоном стоит разработать технологическую карту. В нее будут вписаны все значения лабораторных наблюдений, а также время прогрева и время затвердения материала. 

Расчет прогрева бетона начинается с выбора схемы. Например, чаще всего выбирают четырехстадийную. Первая стадия предполагает собой выдерживание материала. После этого показатели температуры повышают до конкретного значения, осуществляют обогрев и остывание длительность выдерживания перед началом мероприятия примерно 1-3 часа при низком температурном режиме. Поле этого можно переходить к расчету обогрева, которое находится в прямой зависимости от скорости и итоговой температуры.

На протяжении всего процесса стоит вести контроль температуры, отмечая все результаты при повышении через 30-60 минут, а при остывании контролирование осуществляют 1 раз за смену. При нарушении режима необходимо поддерживать все параметры, отключив ток и повысив напряжение. В таком случае показатели фактические и полученные в ходе расчета могут не совпадать. После этого строят график зависимости времени от прочности, где обозначают необходимое значение времени и температуры обогрева, а после отыскивают необходимое значение прочности.

Процесс обогрева бетона – это очень важные мероприятия, без проведения которых бетонная конструкция при морозах просто перестанет набирать прочность, в результате чего это приведет к понижению марки и дальнейшему разрушению. Осуществить все эти мероприятия несложно, достаточно просто определить, какой из представленных подходит вам больше всего.

Время прогрева бетона



При выполнении строительных бетонных работ самое пристальное внимание обращается на придание прочности и долговечности материалу. Ведь для того, чтобы смесь приобрела такие необходимые свойства в зимних условиях, требуется соблюдать технологию прогрева бетона.

Когда приходит время прогрева бетона?

Проводя бетонирование различных конструкций, начиная с поздней осени, следует задуматься, при какой температуре прогревают бетон. Если ожидается, что на улице среднесуточная температура будет опускаться ниже +5°С, и в тоже время минимальные отметки коснутся значений ниже 0°С, то подобные виды работ должны проводиться с прогреванием бетона для обеспечения условий для его оптимального созревания.
В зависимости от региона, наступает разное время для прогрева бетона. Например, в Красноярском крае неблагоприятный период для созревания бетона длится в течение полугода. Климатические особенности Сибири также предполагают ранее похолодание с сильными морозами. Так что ориентироваться в том, при какой температуре следует прогревать бетон, нужно опираясь на характеристики погодных условий в своей местности.

Способы прогрева бетона

Когда наступает время прогрева бетона, то СНиП 3.03.01-87 «Несущие и ограждающие конструкции» предусматривает использование восьми способов создания условий для созревания бетонной смеси. Методы прогрева бетона в зимних условиях различаются от вида конструкции и температуры окружающей среды.

1. Устройство термоса.
Технология прогрева бетона с помощью метода термоса заключается в утеплении опалубки, которая производится сразу же по окончании бетонирования. Тогда поверхность сооружения накрывается слоем теплоизоляции. При этом утепляется опалубка с наружной стороны пенопластом, минеральной ватой, потом досками, фанерой. Подвидом данного метода является ускоренный термос, когда смесь предварительно подогревается до температуры 50-70°С.
Выбор метода в зависимости от вида сооружения можно сделать при помощи таблицы.

Вид сооруженияМинимальная температура окружающей среды, °ССпособ прогревания
Большие по площади фундаменты и плиты из железобетонадо -15термос
до -20ускоренный термос
Фундаменты под массивные сооружения и стеныдо -15термос, ускоренный термос
Бетонирование колон, прогонов, перекрытий, свайных растверокдо -15ускоренный термос

2. Термос с добавлением анти замерзающих добавок и ускорителей созревания бетона.
В данном случае инструкция прогрева бетона заключается в комбинировании утепления монолитного сооружения с добавлением химических веществ, которые ускоряют процессы созревания смеси и в тоже время замедляют ее замерзание. Покупаются добавки в готовом виде.

3. Предварительное подогревание бетонного раствора.
Технологический прогрев бетона осуществляется до температуры 60-80°С непосредственно перед укладкой раствора в формы. Подогрев производится с помощью электрического тока и пара в емкостях, оснащенных электродами или в устройствах непрерывного электрического разогрева.

4. Прогрев электродами.
Схема прогрева бетона заключается в установке в раствор электродов, которые нагревают его металлические элементы. Электрические параметры такого прогрева наведены в таблице.

Температура окружающей среды, °СНапряжение, ВРасстояние между электродами, ммПотребляемая мощность, кВт/м³
-5552002,5
65300
-10551003,0
65250
-15651503,5
75300
-20752004,5
85300

5. Инфракрасный обогрев.
Инструкция прогрева бетона инфракрасными лучами подразумевает передачу тепла смеси с помощью трубчатого электронагревателя, работающего от сети, который греет поверхность по принципу солнца. Такая установка состоит из излучателей, отражателей и поддерживающего оборудования. Интенсивность прогрева смеси регулируется через приближение и отдаление оборудования от ее поверхности и мощностью генератора.

6. Индукционное прогревание.
В индукционную схему прогрева бетона входят индуктора (витки изолированного провода), которые выкладываются вдоль требуемой поверхности опалубки. Затем укладывается раствор. Энергия индукционного поля трансформируется в арматуре или стальной опалубке в энергию тепла, которая передается смеси. Рекомендован данный способ для каркасных железобетонных конструкций.

7. Использование нагревательных проводов.
Технологический прогрев бетона в этом случае осуществляется аналогично индукционному методу, только в провода подается электрический ток, вызывающий повышение температуры раствора.

8. Обогрев в подогреваемой опалубке.
Термоопалубка состоит из инфракрасной пленки или Тэнов, отражательных печей, а также двух щитов между которыми располагается нагревательный элемент. Прогрев бетона осуществляется контактным способом.

На практике, как правило, использование одного метода не гарантирует требуемого результата, поэтому используются комплексные мероприятия.

Технология прогрева бетона

%PDF-1.5 % 2 0 obj > /Metadata 4 0 R /Pages 5 0 R /StructTreeRoot 6 0 R /Type /Catalog >> endobj 4 0 obj > stream

  • Александр
  • application/pdf
  • Технология прогрева бетона
  • 2011-11-17T13:42:38+03:00Microsoft® Word 20102019-10-25T21:14:53+03:00Microsoft® Word 2010uuid:05ba8cc8-4e36-4256-968f-4505cb53fa35uuid:ce24bd30-3a55-4c3a-9e3b-9f1ba01ce0b7 endstream endobj 25 0 obj > stream x\ˎ0º|lw;Hd1$6= %Quԩ. n>pq̾Eh4hY9y;f

    Прогрев бетона в зимнее время проводами расчет

    Ни одно строительство не обходится без такого материала, как бетон. Иногда он требует прогрева, а это процесс достаточно серьезный. Здесь важно знать в точности всю технологию процесса. От этого напрямую зависит прочность и долговечность изготавливаемого материала. Самый распространенный способ – прогрев бетона проводом.

    Зачем прогревают бетон?

    Строительство зданий, сооружений и прочих конструкций с использованием раствора в зимнее время не обходится без обогрева. Как правило, гидратация раствора при отрицательных температурах полностью не проходит. А еще вы можете прочитать про марку бетона для ленточного фундамента, его типы, технология заливки, самостоятельный расчет. Он затвердевает не целиком, некоторые участки смеси замерзают. После оттаивания связь смеси будет нарушена, что непременно скажется на качестве и долговечности сооружения.

    Зимой электрический прогрев конструкции обязателен. Процесс затвердевания смеси ускоряется в определенных (плюсовых) температурных условиях. При этом не нарушается структура связующей смеси, и не страдает прочность непосредственно самой конструкции. Вот зачем прогревают бетон проводом в холодное время года.

    Каким материалом воспользоваться?

    Самым распространенным материалом для этого является провод нагревательный ПНСВ. Он прост в применении, к тому же сравнительно недорогой. Состоит из оцинкованной или стальной однопроволочной жилы, имеющей круглую форму, и полиэтиленовой или ПВХ пластикатовой изоляции. Такой материал используют для прогрева в температурных условиях от + 5 градусов и ниже. На этой странице вы сможете узнать про пропорции для приготовления бетона, его компоненты и параметры.

    Способ прогрева бетона проводом ПНСВ достаточно прост. ПНСП сильно нагреваются и передают тепло конструкции. Для проведения процедуры одного нагревательного элемента не достаточно. Понадобится трансформаторная подстанция (понижающая), которая имеет систему, отвечающую за регулировку тепловой силы. Исходя из внешних изменений температурного режима, устройство регулирует тепловую мощность. Именно от такой подстанции и будет происходить нагрев. Такая установка позволяет нагревать смесь до 30 куб.м.

    Как рассчитать обогрев конструкции?

    Расчет прогрева бетона проводом заключается в следующем: на один кубический метр смеси понадобится примерно 60 метров ПНСВ. Учитывается так же площадь, вид конструкции, необходимая электрическая мощность. Необходимая длина секции нагревательного элемента также может завесить от напряжения трансформаторной подстанции. То есть чем ниже ее напряжение, тем меньше нужна длина. Перед тем как приступать к расчету, прочитайте про бетон для фундамента: состав, пропорции, основные марки. А так же про то, какой расход цемента в бетонной смеси: основные качества составляющих, пропорции цемента в различных марках бетона, допустимые погрешности.

    Провод ПНСВ, будучи погруженным в раствор, нормально функционирует при рабочем токе в 14-16 Ампер. Поэтому преимущественно выбирать именно такой показатель рабочего тока. При этом на открытом воздухе с таким показателем нагревательный элемент достаточно быстро выходит из строя. Вследствие этого его холодные концы (часть, которая должна остаться за пределами конструкции) должны состоять из другого провода – АПВ. Их длина обычно составляет от полуметра до метра. Оптимальным напряжением будет третья ступень трансформаторной подстанции – 75 Вольт.

    Перед тем как прогреть бетон проводом, следует разработать субъективную для конкретной конструкции технологическую карту и составить схему укладки нагревательного элемента. Схема прогрева бетона проводом обычно выглядит так: чертеж конструкцией с обозначениями мест укладки провода. Он обычно укладывается змейкой, не соприкасаясь друг с другом. На чертеже обязательно следует определить точки выхода (холодных концов) нагревательного элемента.

    Технология прогрева: пошаговое руководство

    После того, как произведены все расчеты, составлена технологическая карта и схема, можно приступать к процессу прогрева:

    1. Нагревательный элемент следует уложить равномерно в места заливки. Он не должен соприкасаться с другими своими частями. Так же следует следить, чтобы нагревательный элемент не выходил за пределы конструкции и не касался опалубки.
    2. Прежде чем вывести концы кабеля за пределы обогрева, следует соединить холодные концы с нагревательными выходами, спаяв их. Для того, что бы тепловое поле хорошо сохранялось, рекомендуется участки пайки обвернуть металлической фольгой.
    3. При помощи мегомметра следует провести тест-проверку для того, чтобы обеспечить размеренную нагрузку тока по фазам.
    4. Заливают конструкцию раствором бетона.
    5. На этом этапе через трансформаторную подстанцию (понижающую) можно подавать ток.

    Это один из самых простых способов, как осуществить прогрев бетона проводом. Видео по теме поможет лучше разобраться и понять, что собой представляет технологический прогрев бетона.

    Обогрев конструкции без трансформатора

    Прогрев бетона проводом без трансформатора осуществляется при помощи специального финского кабеля «БЕТ» или электрической резиновой кабельной греющей секции. И «БЕТ», и греющий кабель работают от обычной розетки питания с напряжением 220 Вольт. Так же как и прогрев бетона проводом ПНСВ, процесс его прогрева без трансформатора прост: материал укладывается в места заливки по соответствующей схеме, бетонируется, а выведенные концы подключаются к сети.

    Из всего вышесказанного, следует вывод, что технология прогрева бетона проводом не представляет особой сложности. Главное в этом деле – правильный расчет и точная схема, по которой следует максимально точно распределить нагревательный элемент по бетонной конструкции. А здесь вы сможете узнать про бетон марки М200.

    • 1 Всё о прогреве
    • 1.1 Какие применяют способы для прогрева
    • 1.2 Провод ПНСВ и понижающий трансформатор
  • 2 Заключение
  • Для гражданского, промышленного, а также кустарного (домашнего) строительства при отрицательных температурах существуют различные способы прогрева бетона, позволяющие не останавливать работы на зимнее время. Такие вспомогательные процедуры позволяют не просто продолжать монтажные работы в мороз, но и увеличивают скорость застывания раствора, особенно с добавлением специальных химических ускорителей затвердевания.

    Ниже мы поговорим о таких методах, в общем, и один из них (наиболее популярный) рассмотрим в частности, а также продемонстрируем вам видео в этой статье по теме электрического прогрева бетона.

    Заливка бетона при минусовой температуре

    Всё о прогреве

    Какие применяют способы для прогрева

    • Самый примитивный способ заливки раствора в зимнее время, это обустройство над площадкой самого обычного шатра из целлофановой плёнки своими руками, где в средине можно установить горящую паяльную лампу или тепловую пушку. Метод предельно прост, только его можно применять только на объектах с небольшой площадью, да и над вертикальными конструкциями сложно соорудить такой купол.
    • Несколько проще в такой ситуации использовать электрические маты, которыми просто накрывают площадь заливки, установив регулятор в нужном режиме, в зависимости от температуры воздуха на улице. Но и здесь есть серьёзный недостаток — электроматы неудобно использовать при заливке больших площадей, к тому же матами можно накрывать только горизонтально расположенные ЖБК, но никак не стены, опоры или колонны.

    • Ультрафиолетовая установка прогрева бетона, пожалуй, наиболее удобная из всех существующих, так как не предполагает контакта с самим раствором, а тепловая интенсивность прибора просто регулируется расстоянием между УФ излучателем и объектом. Ещё одно преимущество такого способа, это возможность греть конструкции любой конфигурации и в любом положении (как в горизонтальном, так и в вертикальном), при этом опалубка не является препятствием. Тем не менее, такой метод используется достаточно редко — для него нужно большое количество обогревателей.

    Опалубка с подогревом

    • Ещё один метод создания монолитных железобетонных конструкций в зимнее время, это применение опалубки с подогревом, только применим он исключительно для вертикальных ЖБК (стен, перегородок, опор). Это очень удобно, так как щиты здесь многоразового использования, а нагревательные элементы на них подлежат замене, причём сделать это достаточно просто. Главный недостаток такой опалубки, это очень высокая цена, что, впрочем, окупается при её частом использовании.

    • Для электродного прогрева железобетонных конструкций используется арматура или проволока катанка с сечением от 8 до 10 мм и понижающего трансформатора, но такой метод больше подходит для вертикально стоящих ЖБК. Здесь греются не сами электроды, а влага между ними (кипятильник из двух лезвий работает по тому же принципу), только здесь расстояние между штырями составляет от 60 до 100 см — всё зависит от температуры воздуха. Основным недостатком, несмотря на всю простоту, является очень большое потребление электроэнергии (один электрод потребляет порядка 45-50А), следовательно, стоимость строительства при этом возрастает.

    t?C во время заливки Напряжение (В) Расстояние между штырями-электродами (см) Получаемая мощность (кВт/м3) 1 2 3 4 -5 55 20 25 63 30 75 50 -10 55 10 3,0 65 25 75 40 85 50 -15 65 15 3,5 75 30 85 45 95 55 -20 75 20 4,5 85 30 95 40

    • В данном случае, чтобы выдерживать нужную температуру, её проверяют каждые два часа и для этого заранее изготавливают специальные скважины. Во время разогрева раствора такое тестирование производится каждый час. Во время прохождения всего процесса необходимо постоянно следить за состоянием паек и контактов.

    Провод ПНСВ и понижающий трансформатор

    Примечание. ПНСВ (Провод Нагревательный Стальной Виниловая изоляция) может иметь разное сечение и применяется одноразово. После застывания массы он остаётся там навсегда.

    Использование понижающего трансформатора

    Вышеупомянутые методы прогрева бетона не так популярны, как тот, о котором речь пойдёт сейчас — это использование провода ПНСВ в качестве обогревателя и понижающего трансформатора для преобразования электроэнергии. Суть такого способа заключается в следующем — кабель укладывают петлями в месте заливки раствора, а его сечение будет зависеть от мощности трансформатора и температуры воздуха на улице (в здании), где проводятся работы.

    В зависимости от температуры воздуха с понижающего трансформатора подаётся нагрузка на петли и начинается обогрев, но структура бетона при этом не изменяется, зато значительно увеличивается скорость застывания раствора.

    Диаметр жилы в мм 1,2 2,0 3,0 Ом/метр 0,15 0,05 0,02

    Сопротивление ПНСВ зависит от сечения провода

    Важно! Перед укладкой ПНСВ в обязательном порядке следует убедиться в целостности провода и его оболочки. Дело в том, что контроль прогрева бетона осуществляется только в отношении температурного режима, а сам провод, в случае его перегорания, заменить невозможно, так как он полностью погружен в раствор (к тому же, его замыкание может привести к пожару). Поэтому, для таких целей лучше использовать новый материал.

    Таблица оптимальной длины петли при разных сечениях провода и типах бетона

    Принципиальная схема прогрева бетона

    При укладке ПНСВ инструкция требует, чтобы на этом месте не было никакого мусора, который может повредить оболочку, что в свою очередь, приведёт к короткому замыканию и перегоранию кабеля (как мы уже говорили — заменить его невозможно). Кроме того, при создании петли недопустимо делать резкие изгибы и оставлять «барашки», что приводит к излому провода — все повороты следует выполнять плавно.

    Сама укладка обычно производится либо «змейкой», как это показано на схеме, либо одинарной петлёй — всё будет зависеть от длины ПНСВ и площади заливаемой конструкции. Нельзя ни в коем случае допускать пересечения греющих проводов друг с другом — оптимальное расстояние между жилами порядка 100 мм, хотя его можно изменять, в зависимости от длины и сечения ПНСВ, а также, от размеров рабочей площадки.

    В любом случае греющий провод должен быть полностью залит бетоном (скрутки в том числе), так как на воздухе он будет перегреваться, а в результате сгорит, как изоляция, так и стальная жила. Кроме того, вам следует позаботиться о том, чтобы защитить трансформатор и, как следствие, всю обогревательную конструкцию, от перепадов напряжения, так как бросок может вызвать резкий перегрев и перегорание.

    Понижающий трансформатор КТПТО-80

    Чтобы представить наглядно схему подключения, давайте рассмотрим, как это делается в соответствии со СНиП 111-4-80/гл.11 и ГОСТ 12.1.013-7 — в данном случае задействован понижающий трансформатор КТПТО-80, как на фото вверху.

    Данный агрегат, перед сборкой электрической цепи следует занулить, и делается это с помощью четвёртой жилы кабеля питания на зажим N из блока XT6, шунтируя его с металлическим корпусом управленческого шкафа. Заземление производится от ножек-салазок агрегата, где для этого есть специальный болт с гайкой, а контур делают из стального провода, сечением не менее 4 мм.

    Принципиальная схема КТПТО-80

    По технике безопасности сопротивление изоляции должно быть не менее 0,5МОм, в чём следует убедиться перед подключением, а также нужно осуществить проверку всех скруток и контактных соединений. Затем установите путевые выключатели SQ1 и SQ2 так, чтобы была возможность надёжного замыкания одноименных контактов при открытии крышки кожуха и пульта управления. Кроме того, обязательно проверьте целостность предохранителей на случай КЗ.

    Переключатель силового трансформатора устанавливаете в положение 1 (соответственно — 55В), а автовыключатель и SA3 приводите в положение «ВЫКЛ». После всех этих процедур цепь, установленная в бетонной или железобетонной конструкции, подсоединяется зажимами ХТ6 к блоку.

    На ввод подаётся питание 380В, проверяем напряжение HL1 и HL3, после чего замыкается QF1 и, используя SB1 (аварийная кнопка «ВЫКЛ») пробуем аварийное отключение. После такого теста делается повторное включение — на KL1 подаём питание кнопкой SB3, после чего срабатывает магнитный пускатель KM1.

    Карта прогрева бетона (начальная страница)

    В соответствии со СНиП 3.03.01-87 (по нагреву несущих и ограждающих ЖБК при температуре до -40?C) используется технологическая карта на электрический обогрев проводами типа ПНСВ. Настоящий документ содержит технические и организационно-технологические решения вопросов по методу проводного обогрева со всеми используемыми техническими и технологическими параметрами, то есть, весь график прогрева бетона.

    Температурный лист прогрева

    Для контроля над прогревом, а также для возможности прогнозирования качества ЖБК после окончательного затвердевания используют лист прогрева бетона — бланк для которого всегда можно скачать через Интернет. Такие данные позволяют точно выверить время и порядок твердения залитого раствора, то есть, это как бы пошаговое руководство достижения наибольшей прочности.

    Контроль или расчет прогрева бетона осуществляют с помощью технического термометра — в залитой массе делают специальные воронки, куда закладывается трубка, а в неё уже опускается термометр. Температуру фиксируют через каждые два часа, а если толщина конструкции не превышает 10-115 см, то это делают каждые 4-5 часов.

    Не следует забывать, что при нормальном нагреве ПНСВ — до 80?C — температура бетона при прогреве доходит до 40?C-50?C, и это происходит на морозе!

    Использование сварочного аппарата в качестве понижающего трансформатора

    В домашних условиях в качестве понижающего трансформатора можно использовать сварочный аппарат мощностью не ниже 250А, как на фото вверху, а сопротивление, следовательно. Количество провода ПНСВ в таких случаях можно рассчитать по формуле R=U/I.

    Как правило, показатель U у нас будет 220-230В, и если мы используем агрегат вышеупомянутой мощности, то I=250А. в таком случае R=U/I=220/250=0,88ом и, исходя из этого, можно воспользоваться таблицами для определения нужного сечения и длины провода.

    Следует сказать, что погружая ПНСВ в массу бетона, с трансформатором его следует связывать алюминиевым проводом типа АПВ сечением не менее 4 мм, но скрутка при этом должна находиться в растворе.

    Об этом моменте мы упомянули не зря — вам придётся соединять два неоднородных металла — сталь и алюминий, следовательно, соединение может оказаться неплотным, что приведёт к искрению, перегреву и перегоранию провода. Но переделать залитую раствором скрутку уже будет невозможно, поэтому, уделите особое внимание этому моменту — от него будет зависеть возможность завершения процесса вообще.

    Заключение

    В заключение можно сказать, что наиболее низкая стоимость работ по прогреву бетона — в случае с использованием кабеля ПНСВ и понижающего трансформатора, и хотя такой метод достаточно неудобно применять для вертикальных ЖБК, его всё равно иногда используют для экономии средств. Несмотря на сложность укладки провода (занимает много времени), проводной прогрев ЖБ конструкций применяется чаще всего.

    Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.

    Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.

    Применение

    Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

    Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

    • не обеспечена достаточная теплоизоляция монолита и опалубки;
    • монолит слишком массивен, что затрудняет его равномерный прогрев;
    • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

    Характеристики провода

    Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
    Кабель ПНСВ обладает следующими техническими характеристиками:

    • Удельное сопротивление составляет 0,15 Ом/м;
    • Стабильная работа в температурном диапазоне от -60°C до +50°C;
    • На 1 кубометр бетона расходуется до 60 м провода;
    • Возможность применения до температур до -25°C;
    • Монтаж при температурах до -15°C.

    Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

    Технология прогрева и схема укладки

    Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

    Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

    К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

    Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

    1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
    2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
    3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

    При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

    Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

    Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

    Расчет длины

    Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

    В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

    При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

    Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

    Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

    Прогрев бетона в зимнее время: технологическая карта, способы. | Пенообразователь Rospena

    Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.

    Технологическая карта и способы прогрева бетона

    Прогревать сварочным аппаратом

    Этот метод прогрева предполагает применение следующих материалов:

    • кусков арматуры;
    • лампы накаливания и градусника для измерения температуры.

    Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.

    Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.

    Инфракрасный метод

    Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.

    Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.

    Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.

    Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.

    Какие существуют плюсы и минусы дома из газобетона, указано в данной статье.

    Индукционный метод

    Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.

    После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.

    Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.

    Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.

    Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.

    Применение трансформаторов

    Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.

    Конструкция этого кабеля предусматривает два элемента:

    • однопроволочная жила круглой формы, выполненная из стали;
    • изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.

    Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.

    Какие производители автоклавного газобетона существуют, указано в данной статье.

    Выполняется такая манипуляция по следующей инструкции:

    • Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
    • При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
    • так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.

    Таблица 1 – Характеристика проводов марки ПНСВ

    1 Напряжение переменного тока, В 3802 Длина секции кабеля на напряжение 220 В:– ПНСВ 1,0 мм, м 80– ПНС В 1,2 мм, м 110– ПНС В 1,4 мм, м 1403 Удельная мощность тепловыделения кабеля:– для армированных установок, Вт/п. м.30-35– для неармированных установок, Вт/п.м.35-404Напряжение питания рекомендуемое, В55-1005Среднее значение сопротивления жилы:– ПНС В1,2 мм, Ом/м0,15– ПНС В 1,4 мм, Ом/м0,106 Параметры метода:– Мощность удельная, кВт/м31,5-2,5– Расход провода, п.м./м350-60– Цикл термосного выдерживания конструкций, суток2-3

    Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.

    Использование кабеля

    Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.

    Весь процесс протекает по следующей схеме:

    • Ведется установка кабеля на бетонное основание перед заливкой раствора.
    • Все зафиксировать, используя крепежные детали.
    • Будьте внимательны во время установки кабеля и го эксплуатации, чтобы на его поверхности не возникли повреждения.
    • Выполнить подключение кабеля в низковольтный электрический шкаф.

    Противоморозные добавки

    При добавлении противоморозных добавок бетон способен противостоять самым агрессивным атмосферным осадкам. Входящие в состав такой смеси компоненты могут быть самые различные, но роль главного отведена антифризу. Это жидкость, которая не позволяет воде замерзать.

    Если необходимо взвести конструкции из железобетона, то в составе смеси должен находиться нитрит натрия и формат натрия. Главной особенностью противоморозных смесей остается сохранение антикоррозийных и физико-химических свойств при низком температурном режиме. 

    При возведении товарного бетона, производстве бордюров необходимо задействовать смесь, в составе которой имеется хлорид кальция. Этот компонент позволяет добиться быстрой скорости затвердения, устойчивости к низкому температурному режиму.

    Идеальной противоморозной добавкой остается такое химическое вещество, как поташ. Оно очень быстро растворяется в воде, при этом отсутствует коррозия. Если вы будет применять поташ при прогреве бетона зимой, то удастся сэкономить на строительных материалах.

    Если вы используете противоморозные добавки, то очень важно придерживаться всех норм безопасности. Например, не стоит задействовать бетон с такими компонентами, когда конструкция расположена под напряжением, возводятся монолитные дымовые трубы.

    СНиП

    Все мероприятия по монтажу и строительству нужно выполнять в соответствии с установленными нормами. Процесс бетонирования в зимнее время не считается исключением. Прогрев бетонной конструкции при низких температурах воздуха происходят согласно следующих документов:

    • СНиП 3.03.01-87 – Несущие и ограждающие конструкции
    • СНиП 3.06.04-91 – Мосты и трубы

    Несмотря на то, что представленная документация лишь косвенно затрагивает тему, связанную с прогревом бетона, в ней содержатся определенные разделы, в которых имеется технология заливки бетонного раствора в морозное время года.

    Расчет времени

    При расчете прогрева бетона необходимо принимать во внимание таки факторы, как тип конструкции, общую площадь обогрева, объем бетона и электрическую мощность.

    Во время обогревательных работ с бетоном стоит разработать технологическую карту. В нее будут вписаны все значения лабораторных наблюдений, а также время прогрева и время затвердения материала. 

    Расчет прогрева бетона начинается с выбора схемы. Например, чаще всего выбирают четырех стадийную. Первая стадия предполагает собой выдерживание материала. После этого показатели температуры повышают до конкретного значения, осуществляют обогрев и остывание длительность выдерживания перед началом мероприятия примерно 1-3 часа при низком температурном режиме. Поле этого можно переходить к расчету обогрева, которое находится в прямой зависимости от скорости и итоговой температуры.

    На протяжении всего процесса стоит вести контроль температуры, отмечая все результаты при повышении через 30-60 минут, а при остывании контролирование осуществляют 1 раз за смену. При нарушении режима необходимо поддерживать все параметры, отключив ток и повысив напряжение. В таком случае показатели фактические и полученные в ходе расчета могут не совпадать. После этого строят график зависимости времени от прочности, где обозначают необходимое значение времени и температуры обогрева, а после отыскивают необходимое значение прочности.

    Процесс обогрева бетона – это очень важные мероприятия, без проведения которых бетонная конструкция при морозах просто перестанет набирать прочность, в результате чего это приведет к понижению марки и дальнейшему разрушению. Осуществить все эти мероприятия несложно, достаточно просто определить, какой из представленных подходит вам больше всего.

    Как защитить бетон во время холодной погоды

    Есть три основных цели бетонирования в холодную погоду: 1) защитить только что уложенный бетон от раннего замерзания, 2) защитить бетон, чтобы обеспечить адекватное развитие прочности, и 3) защитить бетон от тепловой удар и растрескивание по окончании периода защиты.

    Согласно Руководству ACI 306 по бетонированию в холодную погоду, холодная погода существует, когда температура воздуха упала до или, как ожидается, упадет ниже 40 ° F в течение периода защиты.Период защиты — это время, необходимое для защиты бетона от воздействия холода. (См. Дополнительную информацию об этом определении на боковой панели.)

    Беречь от раннего замерзания

    Если только что уложенный бетон замерзнет, ​​может произойти немедленное и необратимое повреждение; последующее отверждение не восстановит свойства бетона. Повреждение происходит из-за того, что при замерзании вода увеличивается в объеме на 9 процентов. Образование кристаллов льда и возникающее в результате расширение пасты может снизить прочность на сжатие и увеличить пористость затвердевшего бетона.Снижение прочности до 50 процентов может произойти, если замерзание произойдет в первые несколько часов после укладки бетона или до того, как бетон достигнет прочности на сжатие примерно 500 фунтов на квадратный дюйм.

    Вновь уложенный бетон должен быть защищен от раннего замерзания до тех пор, пока количество воды для затворения или степень насыщения не будут в достаточной степени снижены в процессе гидратации, термин, используемый для описания химической реакции между портландцементом или вяжущими материалами и водой. .Во время гидратации степень насыщения постоянно снижается, поскольку вода для смешивания соединяется с вяжущими материалами, а бетон становится жестким и твердеющим. Из-за процесса гидратации количество доступной воды для смешивания для образования кристаллов льда постоянно уменьшается, поэтому риск необратимого повреждения в случае замерзания бетона снижается.

    Когда нет внешних источников воды, критическая степень насыщения, чтобы один цикл замерзания не приводил к необратимому повреждению бетона, возникает, когда бетон достигает прочности приблизительно 500 фунтов на квадратный дюйм.При заданных температурах отверждения бетонные смеси с хорошими порциями должны достичь этой прочности в течение 24-48 часов. Поэтому очень важно, чтобы вновь уложенный бетон был защищен от замерзания в течение первых 24-48 часов или до тех пор, пока бетон не достигнет прочности примерно 500 фунтов на квадратный дюйм.

    Когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм, он может выдержать один цикл замораживания и оттаивания без повреждений, если бетон является воздухововлекающим и не подвергается воздействию внешнего источника воды.Для воздействия повторяющихся циклов замораживания и оттаивания новый бетон должен достигнуть прочности не менее 3500 фунтов на квадратный дюйм или 4000 фунтов на квадратный дюйм, если он будет подвергаться повторяющимся циклам замораживания и оттаивания и химикатов для борьбы с обледенением. Чтобы избежать повреждений в раннем возрасте из-за холодной погоды, защитите бетон как можно скорее после укладки, уплотнения и отделки.

    Температура и периоды защиты

    Для защиты от раннего замерзания поддерживайте соответствующую температуру бетона, указанную в строке 1 таблицы 1, в течение периодов времени, указанных в строке 1 таблицы 2. Бетон с ускоренным схватыванием может быть получен путем включения ускоряющих химических добавок, уменьшения водоцементного отношения материала (Вт / см), увеличения содержания цемента, уменьшения количества дополнительных вяжущих материалов или замены цементов общего назначения на цементы типа III (высокий -ранний) цемент. Минимальные температуры бетона в строке 1 таблицы 1 являются функцией минимального размера секции, потому что чем массивнее секция, тем медленнее она теряет тепло.

    Согласно строке 1 в таблицах 1 и 2, минимальная температура бетона при укладке и поддержании составляет 55 ° F для бетонной секции с минимальным размером 12 дюймов, а минимальные периоды защиты составляют два и один день для нормального набора и бетонные смеси ускоренного схватывания соответственно.Строка 1 в таблицах 1 и 2 обеспечивает минимальную температуру бетона и продолжительность, чтобы вода для смешивания в только что уложенном бетоне не замерзла.

    В строках 2, 3 и 4 таблицы 1 указаны минимальные температуры бетона в смеси для указанных температур воздуха. По мере снижения температуры воздуха рекомендуемые температуры бетонной смеси повышаются, чтобы компенсировать потери тепла между смешиванием и укладкой бетона. Рекомендации по температуре смеси помогают обеспечить достижимую минимальную температуру бетона при размещении и поддержании (строка 1, таблица 1).

    Защита, чтобы обеспечить достаточный прирост силы

    Скорость затвердевания бетона и набора прочности зависит от температуры бетона. Низкие температуры бетона снижают скорость гидратации и, следовательно, замедляют рост прочности. Чтобы гарантировать, что вновь уложенный бетон приобретает необходимую прочность для безопасного снятия опалубки, опор и перекладин, а также для безопасной загрузки конструкции во время и после строительства, необходимо поддерживать адекватную температуру бетона в период защиты или отверждения.

    Если есть требования к прочности в раннем возрасте, используйте таблицу 2 для определения минимальных периодов защиты для следующих условий эксплуатации: 1) без нагрузки, без нагрузки; 2) без нагрузки, без нагрузки; 3) частичная нагрузка, выставленная; и 4) полная нагрузка. В зависимости от требований к нагрузке и условий воздействия может потребоваться продлить период защиты сверх минимумов, перечисленных в строке 1 таблицы 2

    «Без нагрузки, незащищенный» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и не будет подвергаться воздействию низких температур при эксплуатации.«Нагрузка без нагрузки» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и будет подвергаться воздействию низких температур в процессе эксплуатации. «Частичная нагрузка, подверженная воздействию» означает, что бетонный элемент будет нести нагрузки, меньшие, чем доступная несущая способность в раннем возрасте в течение периода защиты, и будет подвергаться воздействию низких температур в процессе эксплуатации. Элементы, требующие перешоривания для несения строительных нагрузок до достижения указанной прочности, имеют рабочее состояние «Полная нагрузка» и обычно требуют от подрядчика определения прочности бетона на месте.

    Например, условием эксплуатации бетонного покрытия 6-дюймовой стоянки на коммерческой строительной площадке, которое будет подвергаться воздействию зимних условий и отлитого из бетона с ускоренным схватыванием, будет «Неполная нагрузка, незащищенная» и требующая минимальной защиты. срок 4 дня. Согласно строке 1 таблицы 1, минимальная температура бетона 55 ° F должна поддерживаться в течение четырехдневного периода защиты.

    Методы защиты

    Методы поддержания минимальных температур, установленных и поддерживаемых, как показано в строке 1 таблицы 1, включают изоляцию (одеяла и плиты), системы обогрева, такие как электрические одеяла и системы водяного отопления, неотапливаемые или обогреваемые шкафы, или комбинацию этих методов.

    Изоляция является наиболее экономичным средством поддержания адекватной температуры отверждения, поскольку в этом методе используется тепло гидратации или тепло, выделяемое в результате химической реакции между цементом и водой. В зависимости от массы бетона, содержания цемента и условий окружающей среды (то есть температуры воздуха и ветра) изоляция обычно может поддерживать адекватную температуру отверждения, улавливая тепло гидратации.

    Накройте бетон одеялом как можно скорее, чтобы уловить как можно больше тепла гидратации.Улавливание раннего тепла гидратации поможет поддерживать температуру отверждения, но также способствует гидратации, которая, в свою очередь, дает дополнительное тепло. Обязательно защитите углы и поверхности, поскольку эти области наиболее подвержены замерзанию и повреждению в раннем возрасте.

    В экстремальных зимних условиях иногда теплоты гидратации недостаточно для поддержания адекватной температуры отверждения, и требуется дополнительное тепло. Дополнительное тепло можно подавать с помощью электрических бетонных одеял, водонагревателей и обогреваемых шкафов.Конечно, использование дополнительного тепла увеличивает стоимость бетонирования в холодную погоду.

    Гидравлические нагреватели обеспечивают циркуляцию нагретой водно-гликолевой жидкости через систему теплопередающих шлангов, размещенных на бетоне или формах. Обычно шланги покрывают бетонными изоляционными покрытиями для улавливания и удержания тепла.

    Топочные обогреватели для обогреваемых помещений должны иметь вентиляцию и не должны располагаться таким образом, чтобы непосредственно нагревать или сушить бетон. Свежие бетонные поверхности, подверженные воздействию углекислого газа от невентилируемых обогревателей, могут быть повреждены карбонизацией бетона.Карбонизация происходит, когда углекислый газ реагирует с продуктами гидратации цемента, создавая мягкие и меловые поверхности. Невентилируемые обогреватели внутреннего сгорания также производят окись углерода. Конечно, высокие уровни концентрации этих газов опасны для рабочих.

    Защищать от теплового удара и растрескивания

    В конце периода защиты постепенно снимайте изоляцию или другую защиту, чтобы температура поверхности постепенно снизилась в течение последующих 24 часов. В противном случае поверхность бетона может остыть слишком быстро, создавая температурные градиенты между поверхностью и внутренними частями бетона, и возникающие термические напряжения могут вызвать растрескивание поверхности. Оставьте изоляцию на месте и постепенно уменьшайте количество источников тепла до тех пор, пока температура бетона не остынет до средней температуры воздуха. Строка 5 в Таблице 1 показывает максимально допустимое падение температуры поверхности в первые 24 часа после окончания защиты во избежание термического растрескивания поверхности.

    Предварительное планирование — залог успешного бетонирования в холодную погоду. При разработке следующего плана бетонирования в холодную погоду рассмотрите три основные цели: защитить бетон от замерзания в раннем возрасте, защитить, чтобы обеспечить достаточный прирост прочности, и защитить от теплового удара и трещин.

    Список литературы

    ACI 301-10 «Спецификации конструкционного бетона», Американский институт бетона, www.concrete.org

    ACI 306R-10 Руководство по бетонированию в холодную погоду, Американский институт бетона, www.concrete.org

    Косматка, S.H. и Уилсон, М.Л., Проектирование и контроль бетонных смесей , 15 -е издание , 2011 г. , Портлендская цементная ассоциация, www.cement.org

    Как отверждать бетон при температурах ниже нуля

    Зимой на Среднем Западе обычно бывает довольно холодно, но, хотя погода иногда бывает невыносимой, строительство не обязательно прекращается.Зима может показаться тяжелым сезоном для твердения бетона, но ее не всегда можно избежать.

    Бетон лучше всего схватывать при умеренной температуре от 50 до 60 градусов по Фаренгейту. Зимой температура, вероятно, будет значительно ниже, что затруднит правильное отверждение. Снег, лед и холодная погода вызывают задержки в строительстве, и, если бетон не подвергается воздействию правильных элементов, после высыхания он может стать слабым и хрупким. Отверждение бетона в холодную погоду может показаться сложной задачей, но с помощью подходящих инструментов ее можно решить.

    Отверждение бетона в холодную погоду

    Если вы беспокоитесь о приближающихся низких температурах, просто помните, что отверждение бетона в зимние месяцы не должно быть невозможным. Одеяла для отверждения бетона или переносные обогреватели очень помогают в выполнении работы. На месте мы предлагаем несколько различных вариантов отопления, каждый из которых имеет свой уникальный набор преимуществ.

    E1100 Подогреватель грунта

    Гидравлический обогреватель грунта E1100 разработан для быстрого и легкого оттаивания мерзлого грунта, отверждения бетона, предотвращения замерзания и обеспечения временного нагрева воздуха в холодные месяцы года.

    E1250 Подогреватель грунта

    Устройство E1250 оттаивает до 2200 квадратных футов мерзлого грунта и может выдерживать до 2500 квадратных футов бетона в день. Соедините это устройство с одеялами для оттаивания земли, чтобы лучше рассеивать тепло по большой площади.

    E2200 Гидравлический обогреватель грунта

    Гидравлический обогреватель грунта E2200 — идеальное оборудование для обогрева грунта, оттаивания грунта и выдержки бетона. Это устройство для оттаивания грунта может оттаивать до 3000 квадратных футов мерзлого грунта со скоростью до одного фута в день.

    E3000 Гидравлический обогреватель грунта

    Линия продуктов Hydronic Ground Heater у местных компаний проста в эксплуатации и надежна. E3000 будет обеспечивать максимальный поток и постоянную подачу тепла при оттаивании и отверждении. Один насос на каждый контур шланга означает, что на проект доставляется больше БТЕ в час, чем могут обеспечить конкурирующие водонагреватели. Этот блок оттаивает до 4500 кв. Футов. E3000 также оттаивает до 6000 кв. Футов

    E5000 Гидравлический обогреватель грунта

    Самый универсальный жидкостный поверхностный обогреватель E5000 оттаивает, оттаивает, предотвращает замерзание, нагревает и сушит без использования дополнительных насосов.Уникальная насосная система обеспечивает максимальный расход независимо от области применения. E5000 оттаивает или полимеризует до 10 000 кв. Футов. С дополнительными принадлежностями эта машина может полимеризовать до 30 000 кв. Футов и нагревать до 1 700 000 куб. футов или обеспечить 576000 куб. футов сухого тепла со временем работы до 64 часов.

    Система водяного отопления Pureheat

    Воздухонагреватель Pureheat Hydronic обеспечивает временное обогревание больших конструкций и зданий, удаляет лишнюю влагу из рабочего пространства и экономит до 50% топлива по сравнению с традиционными методами.Pureheat прост в эксплуатации и с такими аксессуарами, как системы подачи шлангов, также может использоваться для отверждения бетона, оттаивания промерзшей земли и предотвращения замерзания.

    Одеяла для оттаивания земли

    On Site Companies предлагает ряд покрытий для отверждения бетона. Они специально разработаны для работы с системами водяного обогрева грунта и идеально подходят для отверждения бетона, защиты бетонных плит, отверждения только что уложенных кирпичных или блочных стен и оттаивания любой поверхности земли для работ по озеленению.

    Прекратите отверждение зимнего бетона с помощью на строительной площадке

    Используя обогреватели грунта, можно добиться идеального затвердевания бетона в зимние месяцы. На сайте мы можем предоставить вам множество различных вариантов на выбор в зависимости от ваших конкретных потребностей. Если вам нужен обогреватель или полимеризационное одеяло, мы поможем вам. Свяжитесь с нами сегодня, чтобы узнать цену!

    9 идей для зимней костровой ямы, чтобы согреться — даже в снегу

    Зима стучится в наши двери, и скоро мы достанем зимние куртки из дна ящиков и задней части шкафа и отправимся искать рождественские подарки.Но прежде, чем это произойдет, нам нужно убедиться, что в наших домах тепло к предстоящей зиме. Некоторые люди имеют огромное преимущество владения двором, и, вопреки тому, что некоторые люди могут подумать, дворы тоже могут быть уютным местом для проведения времени даже в более холодное время года. Разумеется, если у вас есть костровище. Для тех из вас, у кого есть двор, у нас есть несколько удивительных идей для зимних костров, которые дадут вам возможность попробовать другой вид отдыха в эти праздники.

    Лучшие идеи для костра на зиму

    Место для сидения у костра бревен и пней

    Кредит: Алисия Стерлинг Клеппин

    Если у вас есть костер на заднем дворе и несколько лишних поленьев, вы можете создать волшебное пространство, где вся семья может собираться, рассказывать истории и готовить закуски. Бревна можно перепрофилировать, а можно купить. В качестве альтернативы вы можете использовать деревянные ящики или поддоны или любые другие кусочки дерева, которые могли бы создать удобное место для сидения как минимум на пару часов.

    Снежный форт Пожарная яма

    Кредит: Serenity Health

    Если ваша семья готова принять снег этой зимы и приложить немного усилий для строительства снежного форта, это может стать волшебным местом для всей семьи, чтобы провести время на свежем воздухе, несмотря на низкие температуры.Эта креативная идея идеально подходит для семей, состоящих как минимум из четырех человек, где каждый может внести свой вклад в реализацию этого проекта. Кажется, это прекрасное место, где можно собраться, поделиться семейными моментами и даже сделать потрясающие фотографии.

    Кресла для костров на качелях

    Кредит: Scaniaz

    Если вы хотите что-то более удобное, чем бревна и пни, наслаждаясь зимним костром, как насчет деревянных качелей? Убедитесь, что они сконструированы так, чтобы выдерживать низкие температуры, а влага, исходящая от снега, не повредит их. Это также отличная идея для круглогодичного отдыха у костра.

    Европейский чутье: утонувшие в лесу места

    Кредит: ШоуШу Лю

    Ничто не сравнится с зимними пейзажами, которыми можно любоваться в Швейцарии, так что, возможно, вы сможете почерпнуть вдохновение для зимних сидений на открытом воздухе в Chedi Andermatt Resort. Удобные подушки и декоративные подушки размещены на каменных краях, окружающих костровую яму, в обстановке, которая кажется оторванной от семейного рождественского фильма.Хотя вам, вероятно, не понадобятся все эти сиденья на заднем дворе, вы можете импровизировать что-то подобное, используя брусчатку, сиденья для террасы и стену с плоским верхом, сделанную своими руками.

    Пожарная яма на дровах

    Кредит: Дорноб

    Безусловно, это одна из наших любимых идей в этом списке, потому что она настолько гениальна и позволяет эффективно использовать открытое пространство вокруг вашего дома. Если у вас есть система отопления, в которой в качестве топлива используется дрова, вероятно, у вас есть дрова.Что, если бы вы использовали все эти бревна для создания концепции, похожей на хижину, где вы могли бы поставить костровую яму посередине и наслаждаться очень уютным местом, которое могло бы держать вас защищенным и теплым, даже когда вы проводите время на улице зимой?

    Патио Костровая яма кальдеры

    Кредит: Solus

    Если вы еще не являетесь счастливым обладателем костровой ямы, но у вас есть патио, почему бы не установить костровую яму прямо во внутреннем дворике? Таким образом, вы можете с удовольствием проводить время на улице рядом с огнем, даже когда осел снег.Вам не придется каждый раз протирать сиденья, и мягкие снежинки не будут беспокоить вас, пока вы потягиваете чашку горячего какао, наслаждаясь ревущим огнем и глядя на красивый белый халат природы.

    Простая зимняя кострище

    Если вы думаете, что создание костровой ямы — это слишком сложная или слишком дорогая идея, что, если бы мы сказали вам, что сделать это очень легко, если вы готовы добыть основные материалы и вырыть яму в землю? Существует множество руководств, которые покажут вам, насколько легко сделать зимнюю яму для костра с ограниченным бюджетом, и которые идеально подходят для использования даже при таянии снега, а летние ночи идеально подходят для проведения времени на открытом воздухе.

    Костровище на бюджет

    Предположим, у вас нет бюджета, времени или энергии, чтобы развести костровище зимой. Вот еще одна гениальная идея, которая может помочь вам наслаждаться этой уличной обстановкой с семьей: используйте барбекю на угле в качестве костровой ямы. Вы можете воспользоваться термостойкой конструкцией барбекю, чтобы поджечь дрова и расставить стулья вокруг этой импровизированной костровой ямы. Это просто как 1 — 2 — 3!

    Огненная яма Зимней страны чудес

    Кредит: Rockland Supplies

    Если вы действительно хотите создать обстановку мечты на открытом воздухе, которая объединит всю семью в холодное время года, помните, что декоративные наружные светильники могут иметь большое значение, помогая вам создать зимнюю страну чудес на открытом воздухе.Убедитесь, что вы как можно щедрее используете уличное освещение и украсьте как можно больше элементов вокруг костровой ямы. Как детям, так и взрослым будет приятно находиться на улице.

    Зимняя кострище FAQ

    Вопросы о назначении или эффективности костра зимой вполне естественно. Здесь мы ответили на некоторые из наиболее часто задаваемых вопросов по этой теме. Мы обещаем, что идея собраться вокруг костра в декабре — хорошая идея.

    Согревают ли костровые ямы?

    Да, но то, как они согреют, будет зависеть от типа имеющейся у вас костровой ямы. Например, некоторые ямы согреют вас из-за излучающего тепло пламени — например, ямы для гриля с открытым огнем или простые ямы с отверстиями — в то время как другие будут согревать вас благодаря материалам, которые сохраняют тепло и излучают его, например, кирпич, бетон, брусчатка и т. д. Эти дополнительные градусы могут согреться и поджарить.

    Как мне получить больше тепла от костра зимой?

    Это зависит от того, какая у вас костровище.Предположим, ваша костровище требует сжигания дров для выработки тепла. Если хотите, чтобы яма отдавала больше тепла, можно поэкспериментировать с разными видами дров. Хвойные породы дерева обычно лучше подходят для разжигания огня, и они, как правило, выделяют больше тепла, чем лиственные. Вам также следует убедиться, что вы все время используете сухие дрова, когда разжигаете огонь. Увеличение площади поверхности также может помочь, потому что это позволяет большему количеству кислорода достигать огня.

    Нужен ли мне укрытие для костра зимой?

    Да, потому что крышка может защитить костровище от множества различных вещей зимой.В первую очередь, крышка предотвращает накопление влаги, которая может привести к коррозии оборудования. Это особенно актуально, если у вас есть металлические костровые ямы. После того, как растает снег, будет намного проще очистить костровище, потому что вы не обнаружите груды мусора внутри ямы. Крышка сохранит все это. Вы также должны учитывать, что некоторые костровые ямы являются идеальным убежищем для грызунов, и вы не хотите, чтобы ваша в конечном итоге стала домом для животных.

    Итог

    Даже если у вас нет костровой ямы, всегда есть возможность сделать ее самостоятельно (соблюдая все меры безопасности). Он может подарить вам множество незабываемых семейных моментов в мире, где доминируют технологии, из-за которых мы слишком много времени проводим перед экранами и меньше времени на общение на свежем воздухе. Несмотря на низкие температуры, вы все равно можете проводить время на улице, если у вас есть источник огня, чтобы согреться. Если вы не готовы рискнуть развести костер в своем дворе, то костровище — прекрасная идея, и, проявив немного воображения, вы можете создать такую ​​прекрасную обстановку, что ваша семья будет спрашивать вас, парни могут оставаться на улице еще какое-то время.

    Бетонные работы в холодном климате могут оказаться сложной задачей

    В местах, где температура обычно опускается до -42 ° C и ниже, успешная заливка и отделка бетона могут оказаться сложной задачей.

    Всегда есть возможность замерзшего бетона и замерзших желобов. Кроме того, замерзает насос, не качающий бетон даже 10 минут в Форт-Мак-Мюррей.

    Это похоже на то, когда люди оставляют из-под крана струю воды, чтобы проточная вода предохраняла трубы от замерзания под землей, — сказал Гарри Джейкобсон, генеральный директор P-Ban Enterprises, крупнейшей компании по производству бетонных насосов, занимающейся установкой и отделкой бетона в Северной Альберте.

    «Это тот же принцип для бетононасоса, за исключением случаев, когда насос замерзает, у нас большие проблемы, потому что теперь у нас есть все эти четырехдюймовые трубы, заполненные бетоном».

    Их нужно сложить, отвезти обратно в магазин и положить в обогреваемый отсек для стирки.

    Когда через пару часов они начнут таять, каждый кусок трубы нужно разобрать и промыть, иначе он затвердеет.

    «Вы потеряли штангу. Это хит в 10 000 долларов », — сказал он.

    Также в насосах есть нагреватели баков, чтобы вода не замерзла, а в гидравлических баках установлены специальные нагреватели для нагрева жидкости.

    Большая часть работы компании находится в двух часах езды от магазина.

    По словам Якобсона, на объекте бригады проводят предварительный нагрев стрелы в течение примерно получаса, чтобы убедиться, что она достаточно теплая, чтобы принять бетон, в противном случае он замерзнет, ​​как только ударится о сталь.

    И он, и Джейсон Краби, операционный менеджер, отметили, что в случае отказа от контракта, когда температура упадет ниже –20 ° C, заказчик будет нести ответственность за замораживание, потому что слишком много вещей находится вне контроля компании.

    Бетон по большей части замерзает быстрее, чем застывает, добавил Краби.

    «Мы зависим от Lafarge, Burnco и Inland, чтобы убедиться, что они будут поставлять нам бетон достаточно быстро, чтобы нам не пришлось останавливаться», — сказал Якобсон.

    Келли Нейландс, менеджер подразделения готовых смесей Burnco, сказала, что самым большим препятствием, с которым они сталкиваются, является обеспечение правильной температуры бетона на момент его поступления. Компания не будет поставлять холодный бетон, потому что он не схватывается, не затвердевает должным образом и не соответствует требованиям прочности.

    Иногда есть смягчающие обстоятельства, объяснил Нейланд, например, пройденное расстояние.

    «Если нас просят доставить на три часа на юг, а при ветре 40 градусов ниже нормы, велика вероятность, что мы не сможем выполнить поставку в рамках спецификации», — сказал он.

    Есть также те же проблемы с оборудованием, с которыми любой оператор сталкивается в холодную погоду.

    «Мы гарантируем, что все запаркованы внутри, и мы проверяем, что все полностью работоспособно, прежде чем мы его вытащим. Нагреваем все масла, гидросистемы.Если это станет моментом, когда наша гидравлика начинает визжать, тогда мы знаем, что они слишком много работают, и собираемся принимать некоторые решения на основе этого », — сказал он.

    Размер и график некоторых нефтяных проектов приводит к зимнему проливу.

    Якобсон сказал, что некоторые клиенты P-Ban намерены запустить свои заводы к весне или летом, а это значит, что такие работы, как отделка бетона, должны выполняться зимой.

    Размер этих проектов может быть сложным с точки зрения отопления и накопления.

    Они должны построить подобную палатке структуру, которая должна быть достаточно легкой и относительно быстрой, чтобы ее можно было установить и разобрать. Он также должен противостоять зимним штормам и ветрам.

    Конструкция щита должна быть достаточно большой, чтобы покрывать зону заливки, а затем часть, чтобы обеспечить достаточное покрытие. Бетон мог замерзнуть через пять минут после заливки.

    Когда бетон замораживается и оттаивает, он может стать рассыпчатым и пыльным, или на нем вместо гладкой поверхности шпателем будет виден рисунок Джека Фроста.

    Из-за перекачки тепла в щиты почти неуютно жарко.

    Зимой для снижения влажности используются воздушные двигатели, а для отделки — затирочные машины, но даже с выхлопными скрубберами накапливается углекислый газ и окись углерода.

    «Наши ребята носят газоанализаторы, чтобы знать, когда они подвергаются воздействию окиси углерода», — сказал Краби.

    Однако, когда двери открываются, чтобы впустить свежий воздух, образуется туман на уровне подбородка, когда ледяной ветер встречает более теплый воздух.

    «Пола не видно», — сказал он.

    Компания просит клиента создать систему вентиляции с использованием борцов с морозом, чтобы нагнетать тепло в здание для создания положительного давления, выталкивая выхлопные газы через люк в крыше или окно.

    Примерно в октябре P-Ban начинает рассылать всем своим клиентам информационные листы о холодной погоде, информируя их о требованиях к работе в холодном климате, будь то от нуля до –20 ° C или от –20 и ниже.

    Исследование раннего теплового поля одноячеечного бетона коробчатой ​​балки, выдерживаемого в электрических нагревательных печах

  • 1.

    Лю X. Анализ температурных напряжений бетонной конструкции. 1-е изд. Пекин: People’s Communications Press; 1991.

    Google ученый

  • 2.

    Чен Л. Анализ теплового поля бетонной коробчатой ​​балки раннего возраста. J Highw Transp Res Dev. 2018; 35 (10): 50–5.

    Google ученый

  • 3.

    Bo Z, Qingsheng G, Shuixing Z. Анализ теплового поля нулевого блока непрерывного моста с жесткой рамой.J Chongqing Jiaotong Univ (Nat Sci). 2012; 31 (5): 924–6.

    Google ученый

  • 4.

    Хуанг Й.Х., Лю Г.Х., Хуанг С.П. и др. Экспериментальные и конечно-элементные исследования теплового поля массивной опоры моста, вызванного теплотой гидратации бетона. Constr Build Mater. 2018; 192: 240–52. https://doi.org/10.1016/j.conbuildmat.2018.10.128.

    Артикул Google ученый

  • 5.

    Ли Дж. Х., Калкан И. Анализ теплового воздействия окружающей среды на сборные железобетонные балки мостов: перепады температур и тепловые деформации. Adv Struct Eng. 2012; 15: 447–59. https://doi.org/10.1260/1369-4332.15.3.447.

    Артикул Google ученый

  • 6.

    Тайси Н., Абид С. Распределение и изменение температуры в бетонных мостах коробчатых балок: экспериментальные и параметрические исследования методом конечных элементов. Adv Struct Eng.2015; 18: 469–86. https://doi.org/10.1260/1369-4332.18.4.469.

    Артикул Google ученый

  • 7.

    Ду-Йол Ю., Бантия Н. Механические свойства сверхвысокопроизводительного фибробетона: обзор. Цемент Конкр Компос. 2016; 73 (08): 267–80. https://doi.org/10.1016/j.cemconcomp.2016.08.001.

    CAS Статья Google ученый

  • 8.

    Roller JJ, Russell HG, Bruce RN, et al. 2003 Влияние температур застывания на мостовые балки из высокопрочного бетона. Pci J 48: 72–79. Doi: https://doi.org/10.15554/pcij.03012003.72.79.

  • 9.

    Yazıcı H, Yardımcı MY, Aydın S, et al. Механические свойства реактивного порошкового бетона с минеральными добавками при различных режимах твердения. Constr Build Mater. 2019; 23 (3): 1223–31. https://doi.org/10.1016/j.conbuildmat.2008.08.003.

    Артикул Google ученый

  • 10.

    Ма Ю. Обсуждение технологии парового отверждения сборных бетонных элементов. Зеленый матер сборки. 2017; 05: 4–6.

    Артикул Google ученый

  • 11.

    Янь П., Ли М, Чжоу И-Кью. Анализ потери прочности образцов бетона, отвержденных высокотемпературным паром. J Electron Microsc. 2019; 38 (01): 82–6.

    Google ученый

  • 12.

    Гу Й, Ли Й, Яо К. Исследование теплового поля бетонной коробчатой ​​балки под воздействием солнечного излучения.J Highw Transp Res Dev. 2016; 33 (2): 46–53.

    Google ученый

  • 13.

    Cui X-Q, Feng Z-R, Huang Y. Анализ расчета температурного воздействия в бетонном мосту с коробчатой ​​балкой. Конкретный. 2016; 8: 34–34.

    Google ученый

  • 14.

    Xu Y, Feng M, Zhou J, Shao J, Gao J. Имитационный анализ температурного воздействия коробчатой ​​конструкции в различных тепловых полях. Чин Зарубежная дорога.2015; 35 (6): 85–9.

    Google ученый

  • 15.

    Цзэн QX, Хан DJ, Ma HT, Tan YP. Анализ температурных воздействий на мостовые балки из предварительно напряженного бетона. J Central South Univ (Sci Technol). 2010. 41 (6): 2360–6.

    Google ученый

  • 16.

    Чен З., Гу Б. Численное моделирование теплового поля гидратации крупногабаритной бетонной коробчатой ​​балки. J Highw Transp Res Dev. 2012; 29 (3): 64–9.

    CAS Google ученый

  • 17.

    Яо Г., Ю З., Ян Ю. Исследование теплового поля и температурного напряжения однокамерной коробчатой ​​балки, отвержденной электрическим нагревателем. China Civ Eng J. 2018; 51 (3): 109–16.

    Google ученый

  • 18.

    Zhu B-F. Температурное напряжение и температурный контроль массового бетона. 2-е изд. Пекин: Китайская электроэнергетическая пресса; 2012.

    Google ученый

  • 19.

    GB 50496–2009. Нормы для строительства массового бетона. 1-е изд. Пекин: Китайская пресса о планировании; 2009.

  • 20.

    Ким М. Дж., Ким С., Ли С. К. и др. Механические свойства сверхвысокопроизводительного фибробетона при криогенных температурах. Constr Build Mater. 2017; 157: 498–508. https://doi.org/10.1016/j.conbuildmat.2017.09.099.

    CAS Статья Google ученый

  • 21.

    Янь З., Ли Х., Ань М-Дж. Прогресс исследований по методу оценки эффекта отверждения бетона.Конкретный. 2012; 4: 82–5.

    Google ученый

  • Лучшие методы заливки бетона в холодную погоду

    С наступлением зимы в Канаде и северных Соединенных Штатах большинство бетонных работ прекращается. Но из-за изоляционных свойств пенополистирола работа ICF часто продолжается и зимой.

    Питер Полли, застройщик семиэтажного кондоминиума площадью 113 000 кв. Футов в Галифаксе, Новая Шотландия, говорит, что они регулярно работали в периоды сильного холода.Он говорит, что были несколько дней, когда рабочие складывали формы при температуре 20 градусов ниже нуля (около -5 ° F) и заливали бетон, когда было не намного теплее. У строителей ICF от Аляски до Колорадо есть похожие истории.

    Исследования показали, что если бетон достигает минимальной прочности на сжатие 500 фунтов на квадратный дюйм до того, как он замерзнет, ​​его предел прочности не пострадает. Обычно это происходит в течение первых 24 часов. Эмпирическое правило заключается в том, что если бетон может выдерживаться при температуре выше 40 ° F в течение 24 часов, он достигнет проектной прочности.

    Причина, по которой изоляция имеет значение при заливке в холодную погоду, заключается в том, что гидратация бетона является экзотермической. То есть химическая реакция между водой и портландцементом фактически создает тепло. Теоретически, если опалубка была должным образом изолирована, тепло, выделяемое затвердевающим бетоном, удерживалось бы выше порогового значения 40 ° F, необходимого для достижения проектной прочности.

    Несколько лет назад в Нортфилде, штат Миннесота, жестокий холод миннесотской зимы настиг монтажников, работавших на трехэтажных стенах общежития колледжа ICF.Воспользовавшись возможностью проверить эту теорию в полевых условиях, в проливной день команда протолкнула термометр для мяса через пену в только что залитую бетонную сердцевину. Температура на рабочем месте колебалась около 19 ° F, но встроенный в бетон термометр оставался около 100 градусов в течение полных 24 часов.

    Общежития Карлтонского колледжа, построенные в Нортфилде, штат Миннесота, являются лишь одним примером того, как ICF могут позволить продолжить бетонное строительство, когда другие методы будут вынуждены остановиться.

    Это соответствует опыту Фила Саммерса, дистрибьютора Arxx в Фэрбенксе, Аляска.В его случае на заводе использовалась горячая вода, поэтому температура бетона, выходящего из грузовика, составляла 95 ° F. Он приклеил изоляцию из стекловолокна R-11 к верхней части форм, а также к оконным и дверным бакам. По его словам, по истечении семи дней на рабочем месте было -10 ° F, но в течение нескольких дней температура внутри форм никогда не опускалась ниже 80-85 ° F.

    Вместо того, чтобы полагаться на анекдотические свидетельства, Портлендская цементная ассоциация (PCA) несколько лет назад заказала официальное исследование, чтобы выяснить, можно ли воспроизвести эти утверждения в лабораторных условиях.Отчет, доступный в книжном магазине PCA под названием «Строительство стен ICF в холодную погоду», в значительной степени подтверждает данные полевых отчетов.

    Для исследования пять секций стены ICF 4’x4 ’были построены из форм, подаренных Reward и Arxx, и соединены термопарами. Затем их наполнили и сразу переместили в морозильную камеру с температурой 0 ° F (-18 ° C). Два образца (керн диаметром 4 и 6 дюймов). были добавлены шесть дюймов пенополистирола пенополистирола сверху, снизу и по бокам для имитации секции «чистой стены».Еще двое использовали размерный брус для имитации участка стены у оконного или дверного проема. Последний образец стены представлял собой 6-дюймовый керн, установленный на замороженном основании. Данные были сверены с компьютерными моделями, которые затем использовались для экстраполяции результатов на самые разные условия и конструкции бетонной смеси.

    Несмотря на внешнюю температуру 19 ° F, бетонное ядро ​​этой стены ICF оставалось около 100 ° F в течение нескольких часов после заливки.

    Сегменты стены были заморожены перед укладкой бетона.Из-за логистических ограничений стены были перемещены из морозильной камеры во время укладки бетона, но во всех случаях были возвращены в морозильную камеру как можно скорее, обычно менее чем за 30 минут. Была использована одна и та же бетонная смесь: воздухововлекающая смесь, 3000 фунтов на квадратный дюйм, заполнитель дюйма. Соотношение цемента составляло 564 фунта / сантиметр, а температура смеси составляла 66 ° F на входе в формы.

    Результаты секций с «чистой стенкой» показали, что ICF работают намного лучше, чем съемные формы. Средняя температура воздуха в течение семидневного периода после заливки составляла приблизительно -5 ° F.Тем не менее, смесь в четырехдюймовой стене не опускалась ниже 40 ° F в течение полных 48 часов и начинала замерзать только через три дня после укладки. В 6-дюймовой панели бетон оставался выше 40 ° F в течение четырех полных дней и, наконец, начал замерзать через 5,5 дней после установки.

    В секциях «рядом с деревянным каркасом» использовалась 6-дюймовая изоляция из пенополистирола сверху и снизу, но только 2 дюйма древесины по бокам. На самом деле только одна сторона была из простого дерева. С другой стороны, они прикрепили 2 дюйма пенополистирола поверх деревянного каркаса.Бакенбарды крепились стальными болтами диаметром ½ дюйма. Зная, что это обеспечит значительный тепловой мостик, исследователи разместили термопары непосредственно за болтами.

    4-дюймовый сердечник с неизолированными болтами оказался неудовлетворительным, поскольку область в пределах 2 дюймов от болтов упала ниже порогового значения 40 ° F в течение нескольких часов и замерзла в течение 36 часов. Но 6-дюймовая панель работала адекватно, а 6-дюймовая изоляционная опорная панель работала почти так же, как и прозрачная стена.

    По третьей конфигурации, «залитой на мерзлый фундамент», результаты испытаний были неоднозначными.Основание размером 18 дюймов x 6 дюймов было предварительно охлаждено при 0 ° F в течение 18 часов и в среднем составляло 25 ° F во время заливки. Термопары показывают, что основание немедленно заморозило жидкую воду в свежем бетоне на границе раздела между ICF и основанием. Это должно было привести к образованию слоя мерзлого бетона у основания стены, что нарушило бы ее структурную целостность. Тем не менее, реальные испытательные цилиндры, взятые на 6 дюймов выше основания, измеряли чуть более 5000 фунтов на кв.В противном случае стена оставалась выше 40 ° F в течение не менее 48 часов на высоте шести дюймов над основанием и 72 часа на высоте 18 дюймов над основанием.

    Автор отчета Джон Гаджа резюмирует: «Благодаря присущей им изоляционной способности изоляционные бетонные опалубки (ICF) позволяют безопасно возводить бетонные стены при температурах ниже, чем у бетонных стен, отлитых в формы многоразового использования… Данные, собранные в ходе испытаний« чистой стены » ”Области указали, что бетон можно укладывать без специальных мер предосторожности, чтобы предотвратить повреждение от замерзания при температурах намного ниже, чем это допускается для бетонных стен, отлитых в многоразовые формы.Результаты испытаний бетона на участке «рядом с деревянным каркасом» показали, что открытые стальные анкерные болты необходимо изолировать, чтобы предотвратить повреждение бетона от замерзания. Данные, собранные для бетона ICF, помещенного на замерзшую основу, были несколько противоречивыми. Измеренные значения прочности на сжатие были приемлемыми, однако зарегистрированные температуры показали, что бетон, находящийся в прямом контакте с замерзшим основанием, преждевременно замерз, что повредило бетон ».

    Полный отчет PCA включает набор таблиц, основанных на широком диапазоне переменных, не охваченных в этом обзоре, включая температуру бетона до 40 ° F, температуру воздуха до -20 ° F и четыре типичных конструкции бетонной смеси.Также учитываются данные об углах, перемычках и использовании летучей золы и других пуццоланов.

    Полли и Саммерс сообщают, что самая большая проблема с работой ICF в холодную погоду не имеет ничего общего с бетоном. «Самая большая проблема заключается в том, чтобы экипаж оставался в тепле, — говорит Полли. «Кроме того, распорки и строительные леса могут обледенеть, что создает дополнительные проблемы с безопасностью». Саммерс говорит, что в крайних случаях некоторые пластиковые полотна могут стать хрупкими, и что при минусовых температурах он треснул несколько полос обрешетки, прикрепляющих распорки.

    Термический анализ асфальтобетонных покрытий, нагретых с использованием технологии аморфных металлов

    Несомненно, наиболее часто используемый метод содержания дорог включает использование автомобилей зимней службы для очистки проезжей части от снега и распыление химикатов для предотвращения образования льда на поверхности дороги. . Применение этих традиционных методов на дорогах и в аэропортах сопряжено с многочисленными экологическими, организационными и техническими проблемами. Чтобы преодолеть эти критические проблемы, были разработаны новые нетрадиционные технологии, которые действуют внутри дорожного покрытия, тем самым повышая его температуру.В зависимости от используемого источника тепла их можно разделить на химические и физические методы. Целью данного исследования является изучение изменения температуры при тепловом переходном процессе, вызванном действием физического нагревательного устройства, установленного в дорожном покрытии. Нагревательное устройство представляет собой ленту из аморфного материала, способную выделять тепло для нагрева дорожного покрытия и его поверхности. По принципу действия относится к числу нетрадиционных физических методов обработки снега и льда.В данной работе представлены характеристики нагревательных лент на экспериментальной площадке в международном аэропорту Дж. Маркони в Болонье (Италия).

    1. Введение

    Зимой удаление снега и льда является одной из основных проблем содержания дорожного покрытия, что имеет множество негативных последствий для автомобильных и железных дорог и аэропортов [1]. Эти атмосферные явления трудно предвидеть и опасны, поскольку они влияют на безопасность пользователя, снижая сопротивление скольжению дорожного покрытия.На проезжей части частота аварий из-за обледенения в 4-5 раз выше, чем то, что наблюдается после работ по опрыскиванию автомобилей зимними службами [2]. Что касается безопасности деятельности в аэропорту, большое значение имеет сопротивление скольжению на поверхности как в сухих, так и во влажных условиях из-за опасностей, связанных с наземными маневрами самолетов. С точки зрения управления бизнесом, возможны серьезные спады в деятельности аэропортов, такие как отмена вылетающих рейсов и изменение направления входящего трафика в другие аэропорты [3].Дорожная инфраструктура становится следующим доступным и широко используемым видом транспорта, когда существует неопределенность путешествия из-за погодных условий, и это, несомненно, увеличивает время в пути на наземном транспорте, что приводит к низкому уровню обслуживания и ставит под угрозу качество комфорта во время поездки.

    Лед и снег также являются источником деградации мощеных поверхностей [4]. Явление термического растрескивания проявляется в результате резкого понижения температуры (низкотемпературное растрескивание) или из-за усталости, вызванной повторяющимися термическими циклами (термическое усталостное растрескивание) [5].В гибких покрытиях низкотемпературное поведение асфальтобетона (AC) связано с химическими и реологическими свойствами принятого битума [6]. Как правило, при низких температурах такой характер поведения способствует потере способности связующего к ремонту и, следовательно, вызывает более быстрое разрушение в соответствии с явлением усталостного растрескивания [7, 8]. Кроме того, как в гибких, так и в жестких покрытиях пористая структура бетона и AC приводит к ухудшению качества поверхности качения, когда они подвергаются циклам замерзания и оттаивания.Фактически капиллярные поры обеих смесей могут удерживать воду, но из-за понижения температуры ниже 0 ° C вода становится льдом с увеличением объема примерно на 9% [9]. Когда это происходит, он не может быть размещен внутри полостей бетонной матрицы, и, следовательно, возникают напряжения, приводящие к повреждению материала. Особенно это наблюдается, если действие мороза неоднократно чередуется с оттаиванием.

    Традиционные методы обслуживания в зимний период включают использование автомобилей зимней службы для устранения накопления снега на асфальте и разбрасывания химикатов для предотвращения образования льда.Непосредственное применение этих методов на дорожном покрытии дорог и в аэропортах создает ряд экологических, организационных и технических проблем. Зимнее обслуживание становится все более дорогостоящей статьей годового бюджета агентства и может привести к воздействию на окружающую среду [10]. Стоит отметить, что нанесение химикатов, предотвращающих обледенение (хлорид натрия, хлорид кальция и хлорид магния), которые представляют собой наиболее распространенный метод зимнего обслуживания, вызывает прогрессирующее ухудшение состояния мощеной поверхности из-за химического взаимодействия с битумными слоями или бетоном ед.Чтобы преодолеть эти проблемы, разрабатываются нетрадиционные технологии, которые действуют внутри дорожного покрытия и повышают его температуру.

    Применение химического метода требует добавления в асфальтобетон специальных добавок. Например, можно использовать обычный дорожный хлор или специальные материалы (обычно 3% и 5% от веса заполнителей) в зависимости от рабочих температур, предусмотренных на этапе проектирования. Эти добавки снижают температуру замерзания воды на асфальтированной поверхности и замедляют образование кристаллов льда [11].Однако в экстремальных погодных условиях существенных различий не наблюдается, потому что температура резко падает; следовательно, реакция продукта становится незначительной, что не приводит к практическим наблюдениям.

    Другой метод заключается в воздействии непосредственно на тротуар с применением новых составляющих материалов, способных уменьшить образование льда на поверхности. Некоторые исследователи разработали супергидрофобное покрытие (SC) на асфальтовом покрытии, которое обеспечивает хорошие противообледенительные характеристики, способствуя безопасности движения в неблагоприятных погодных условиях [12, 13].В других исследованиях оценивалась возможность использования резиновой крошки и диатомита для производства антиобледенительных асфальтовых смесей с положительными результатами [14]. Что касается физических методов, то цель состоит в том, чтобы вызвать нагревательное воздействие на поверхность дорожного покрытия путем включения установленного внутри него источника тепла. Для обогрева дорожного покрытия используются две различные системы: гидравлическая и электрическая. В гидронных системах нагретая жидкость циркулирует внутри труб, установленных в битумном конгломерате или бетоне, передавая тепло за счет теплопроводности.Согласно Eugster и др., Эту систему можно дифференцировать в зависимости от источника тепла, от которого нагревается жидкость, то есть геотермальных вод, геотермальных тепловых насосов, системы тепловых насосов с грунтовыми источниками и отработанного тепла [15–19]. Наконец, система электрического обогрева нагревает поверхность дорожного покрытия за счет тепла, выделяемого электрическим током в кабелях. В данной статье представлена ​​оценка изменения температуры при тепловом переходном процессе, вызванном действием нагревательных технологий, установленных в битумном покрытии.Представленная нагревательная лента может быть отнесена к физическим методам нагрева дорожного покрытия благодаря тепловой мощности, создаваемой прохождением электричества внутри проводника [20]. Экспериментальная площадка была создана в международном аэропорту Дж. Маркони в Болонье. Выбор этого места зависит от того, что продукт предназначен для использования в ограниченных областях, где требуется быстрый нагрев дорожного покрытия. Проблема действительно очень важна в аэропортах, где некоторые исследователи разрабатывают новые методы, основанные на инфракрасной (ИК) термографии, для оценки и сравнения противообледенительных характеристик, т.е.е., способность задерживать восстановление льда, противообледенительных жидкостей (RDF) взлетно-посадочных полос и рулежных дорожек при обледенении [21].

    2. Экспериментальная работа
    2.1. Система обогрева

    Нагревательное устройство представляет собой гибкую ленту шириной 3,5 см, проложенную под битумным поверхностным слоем (рис. 1). Он состоит из проводящего элемента в виде аморфной металлической полосы на основе никеля, толщиной 25 мкм и шириной 2,5 см. На аморфный элемент нанесено двухслойное покрытие из полиэтилена низкой плотности толщиной 50 мкм мкм.По бокам жилы проложены два медных кабеля с покрытием из полиэтилена высокой плотности. Это обратные кабели, которые подключаются от противоположных концов проводника к передней части ленты, чтобы замкнуть цепь. Комплект электрических обратных кабелей и токопроводящий элемент заключены в другую защитную оболочку, изготовленную из алюминия толщиной 50 мкм и покрытия из полиэстера толщиной 12 мкм м.

    Заземляющий провод непосредственно контактирует с алюминием по всей длине ленты для рассеивания вредного электрического тока.Все элементы покрыты наружным слоем полиэтилена низкой плотности номинальной толщиной 1 мм. В целях безопасности внешний слой полиэтилена обработан огнестойким продуктом. Наконец, система подключается к электрической распределительной коробке с надлежащим защитным слоем с конца ленты. Этот слой также имеет покрытие толщиной 1,4 мм и изготовлен из материалов, изолирующих соединения. После подключения и подключения система образует замкнутую цепь с электрическим сопротивлением, обеспечиваемым металлическим аморфным элементом (рис. 1).Лента имеет змеевидную форму и укладывается под верхний битумный слой или достаточно глубоко, чтобы обеспечить соответствующий нагрев поверхности дорожного покрытия. На Рисунке 1 ленты покрыты тонким слоем холодного асфальта, чтобы защитить систему до нижнего слоя перед укладкой нового горячего асфальта.

    Базовая параметрическая конструкция системы — это расстояние между двумя последовательными элементами в змеевике, которое влияет как на потребление энергии, так и на производительность. Межосевое расстояние 20 см рассчитано на соответствие требованиям проекта по мощности, необходимой на каждый обогреваемый квадратный метр.

    2.2. Экспериментальная площадка

    Экспериментальная площадка была создана на участке служебной дороги недалеко от Терминала авиации общего назначения в международном аэропорту Дж. Маркони в Болонье. Территория была разделена на четыре части, каждая по 4 м в длину и ширину. Две ленты были установлены на двух внешних площадках на глубине 6 см и 10 см от поверхности дорожного покрытия (R6 и R10). В дополнение к этим двум областям для сравнительного анализа были построены две другие секции без нагревательных лент (NR6 и NR10) (Рисунок 2).Глубина 6 см была выбрана таким образом, чтобы фрезерование слоя (3-4 см) не могло повлиять на ленту, а глубина 10 см была выбрана как максимально практичная для установки изделия.


    Для строительства пробного поля существующее покрытие было фрезеровано до достижения достаточной глубины для размещения лент, а затем покрыто новым битумным слоем. Был уложен верхний слой асфальта и утрамбован до конечной толщины 10 см для R10 / NR10 и 6 см для R6 / NR6.В этом испытательном поле был использован высокомодульный асфальтобетон для мелкозернистого связующего слоя с модифицированным битумом с высокой удобоукладываемостью.

    2.3. Система управления и сбора тепловых данных

    Экспериментальная площадка была создана для проверки работы нагревательных лент в реальных масштабах. С этой целью были проведены специальные испытания для оценки таяния снега и льда на дорожном покрытии в зависимости от его температуры нагрева и возможности предотвращения их образования. Для полевых испытаний была разработана специальная система измерения температуры, состоящая из серии термисторов с отрицательным температурным коэффициентом (NTC).Используемые резисторы содержат определенные электрические компоненты и предназначены для обеспечения определенного сопротивления прохождению электрического тока. Термисторы NTC обеспечивали температуру в реальном времени в нескольких точках дорожного покрытия и передачу данных на устройство обработки. Эти термисторы изготовлены из полупроводниковых материалов, таких как оксиды металлов (железо, никель и кобальт). Таким образом, сопротивление уменьшается с ростом температуры и характеризуется NTC. На всех экспериментальных участках датчики были установлены на разной глубине для оценки распределения температуры в дорожном покрытии (Рисунок 3 и Таблица 1).Система измерения температуры, выполненная на испытательном поле, состоит из 21 термистора NTC, установленного в 15 точках измерения: 8 из них поверхностные (глубиной 2 см и 0,5 см), 6 глубиной (глубиной 6 см и 10 см) и 1 из них. тротуар высотой 1,5 м для измерения температуры воздуха (таблица 1).


    905 905 Existing pavement 905 05169055 см 905 905 905 905 905 905 905 905 905 905 905 905

    Точка Площадь Номинальная глубина Сенсор

    T01
    S2 R10 2,0 см T02
    S3 R10 2,0 см T03
    T05
    S5 R10 10.0 см T06
    T07
    S6 NR105 905 905 905 905 905 905 905 905 905 905 905 905 905 905 6.0 см T09
    T10
    S8 NR10 10,0 см T11
    T12
    5165 S9
    S10 NR6 2,0 см T14
    S11 NR6 6,0 см R15
    T1622 905 905 9050 см T17
    S13 R6 6,0 см T18
    T19
    S14 R6 2,016 905 905 905 T21

    В точках глубокого измерения (S4, S5, S7, S8, S11 и S13) были установлены два датчика для каждой позиции, чтобы гарантировать сбор данных.В точках измерения поверхности были установлены одиночные датчики. Для защиты термистора от термических и механических ударов каждый из них вставлялся в цилиндр из нержавеющей стали. Слой холодного асфальта, уложенный для позиционирования, также внес значительный вклад в защиту. Вместо этого наземные датчики были установлены прямо под слоем асфальта. Они были помещены в прорезь в слое, идущем от точки измерения до кромки дорожного покрытия, и последовательно заделаны битумной эмульсией.

    Термисторы имеют температурную чувствительность 1/10 ° C (± 0,1). Они настроены таким образом, что, если не обнаружено значительных колебаний температуры, измерение температуры происходит каждые 3 минуты. И наоборот, изменение температуры выше одной десятой градуса заставляет термистор записывать новые измеренные данные.

    3. Регистрация и анализ данных

    Анализ производительности системы обогрева состоит из 3 последовательных фаз: (1) Температуры отключенной ленты были записаны и изучены для проверки работы измерений и данных в режиме онлайн. система передачи.(2) Была проведена серия тестов активации системы вручную, чтобы проверить работоспособность лент и разработать рабочий протокол. (3) Система была протестирована с удаленной загрузкой для настройки автоматической настройки.

    3.1. Анализ данных, полученных с помощью ручного управления

    Система обогрева была активирована дистанционно, с 5:00 до 13:00 в разные дни, чтобы избежать любых отложенных тепловых эффектов. В этот период температура поверхности в областях NR колебалась от 3 до 5 ° C.Анализ данных, записанных датчиками, размещенными на вертикальной оси, позволил изучить изменение температуры по толщине слоя асфальта.

    На рис. 4 показано, как ленты могли вызывать повышение температуры глубокого и поверхностного слоев в обеих конфигурациях, т. Е. Лента на глубине 6 см и 10 см. Тепло от ленты достигает всех термисторов с задержками и градиентами, связанными с их относительным расстоянием от ленты и от поверхности дорожного покрытия.Самое быстрое изменение температуры было зафиксировано в системе в течение первого часа ее активации. В этот интервал времени средняя скорость температуры составляла 0,018 ° С / мин на поверхности и 0,16–0,18 ° С / мин на более глубоких лентах.

    Принимая во внимание данные, предоставляемые датчиками прямо на лентах, S5 и S13, и соответствующими датчиками, установленными в двух областях без системы обогрева (на той же глубине), можно было рассчитать вклад в обогрев, предлагаемый самой системой . В областях R10 и R6 этот вклад увеличивался, пока не достиг максимального уровня в 13:00 до стабильной температуры примерно 20.8 ° C для R10 и 19,4 ° C для R6 (Рисунок 5). Датчики в областях без ленты остались неизменными и находились в диапазоне от 3,6 до 4,8 ° C.

    Тот же анализ был применен к измерениям температуры поверхности. Данные датчиков в точках поверхности S3 и S12 (соответственно в областях R10 и R6) сравнивались с данными, размещенными в соответствующих точках в областях без лент (NR10 и NR6). Было зарегистрировано, что в R10 вклад нагрева сначала увеличивался, а затем стабилизировался в последние часы активации с пиковым значением, близким к 8.0 ° С. В R6 вклад нагрева, обеспечиваемый системой, имел аналогичную тенденцию с пиковым значением чуть выше 7,0 ° C (Рисунок 6).

    Наконец, было проанализировано поверхностное распределение температуры с расстоянием между соседними элементами ленты 20 см в областях R10 и R6. Значения, предоставленные наземными датчиками, расположенными на вертикальной оси над лентой (S3 в R10 и S12 в R6), и датчиками на средней глубине (S2 в NR10 и S14 в NR6) показали максимальную разницу в R10. равно 1.3 ° C и значения R6 от -0,2 до 0,2 ° C (рисунок 7). Исходя из этого, можно сделать вывод, что распределение температуры поверхности можно считать равномерным в обоих покрытиях, поскольку поверхность R6 прогревается более равномерно.

    3.2. Анализ данных, записанных в автоматическом режиме

    Окончательный анализ сосредоточился на автоматическом режиме активации. Эта система позволяет автономно включать нагревательные ленты, когда температура падает ниже установленного порога. Это значение соответствует температуре поверхности, которая может снизить безопасность инфраструктуры из-за образования льда.Протокол дистанционной активации онлайн предусматривает использование следующего: (i) эталонный датчик температуры: поверхностный термистор, расположенный на вертикальной линии над лентой (S3 в R10 и S12 в R6) (ii) уставка активации при температуре 3 ° C (iii) Диапазон гистерезиса 1 ° C

    В период с 5 по 12 февраля 2016 г. и в 3 разных дня на испытательном участке было зарегистрировано некоторое снижение температуры, достигающее значений ниже порогового значения. Этого было достаточно для активации системы (рис. 8).

    При температурах, зарегистрированных 5 9 9 7 7 9 7 6 февраля, лента глубиной 10 см была включена в 6.05 утра. Эта активация вызвала повышение температуры поверхности R10 на 2,0 ° C во время активации и температуру на ленте на 17,1 ° C. Средняя тепловая скорость на поверхности покрытия составила 0,020 ° C / мин (Рисунок 9). Тенденция изменения температуры поверхности R10-NR10 является почти линейной, а тепловая мощность, обеспечиваемая лентой, постепенно увеличивается до максимальной температуры 3 ° C при 8.00 утра. Это изменение температуры можно рассматривать как вклад ленты в покрытие дорожного покрытия.

    В области R6 в тот же день лента была активирована в 4.38 утра, когда температура в эталонном термисторе S12 была 1,9 ° C, и затем она была отключена в 6.08, когда температура на том же датчике достигла 4,1 ° C. С. В R6 изменение температуры на ленте зафиксировало значение 12 ° C со средней скоростью нагрева поверхности 0,022 ° C / мин (Рисунок 10). Разница между температурами поверхности в R6 и NR6 имела более изменчивую тенденцию и достигала 2 ° C, когда лента была выключена.Таким образом, максимальный нагрев, обеспечиваемый наличием ленты в дорожном покрытии, составляет 1,8 ° C.

    4. Выводы

    Многочисленные тесты, проведенные с нагревательными лентами, и изучение температур, зарегистрированных во время их активации, облегчили глубокое понимание их полевых характеристик. Следует отметить, что представленные экспериментальные работы были ограничены испытательной площадкой в ​​международном аэропорту Болоньи в относительно суровых холодных зимних погодных условиях.

    Концепция системы нагрева позволяет автоматически активировать ленты в зависимости от заданных значений температуры (более низкой / высокой). Это поддерживает температуру поверхности дорожного покрытия выше точки замерзания, чтобы предотвратить образование льда на самом дорожном покрытии, сохраняя при этом потребление энергии до минимума. Это было доказано в местных погодных условиях на испытательной площадке, где было показано, что система обогрева предотвращает небезопасные условия инфраструктуры, принося значительные преимущества как для безопасности пользователей, так и для условий дорожного покрытия в отношении возможного термического растрескивания.

    Согласно представленным результатам, главными переменными, влияющими на характеристики нагревательных лент, являются глубина укладки, тип асфальтобетона, мощность ленты и местные погодные условия. Эти переменные необходимо будет учесть при проектировании и установке системы отопления; тем не менее, рекомендуется использовать глубину от 6 до 10 см, если в течение всего срока службы покрытия предусмотрены операции по фрезерованию поверхности. Разница между характеристиками, обнаруженными на двух глубинах анализа, получила аналогичные значения, поэтому их можно использовать обе.Наконец, следует отметить, что необходимо использовать и откалибровать действующий датчик температуры поверхности, чтобы правильно запускать активацию ленты.

    Основываясь на результатах исследования, можно рассмотреть возможность использования этого типа технологий на относительно небольших территориях для повышения безопасности передвижения (например, тротуары, велосипедные дорожки, пандусы, дорожные сборы, станции технического обслуживания, перроны аэропортов и т. Д.). рулежные дорожки). Изучение долговечности этих устройств в течение более длительного периода времени и их обслуживания будет рассмотрено в будущих исследованиях, направленных на улучшение существующих технологий и их инфраструктурных приложений.

    Доступность данных

    Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *