Температура плавления титана в градусах: Титан. Свойства, применение, марки, химический состав. Сплавы титана

Содержание

Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении

Металл или сплав tпл. С
Алюминий 660,4
Вольфрам 3420
Германий 937
Дуралюмин ~650
Железо 1539
Золото 1064?4
Инвар 1425
Иридий 2447
Калий 63,6
Карбиды гафния 3890
ниобия 3760
титана 3150
циркония 3530
Константин ~1260
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Нейзильбер ~1100
Никель 1455
Нихром ~1400
Олово 231,9
Осмий 3030
Платина 17772
Ртуть
38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Фехраль ~1460
Цезий
28,4
Цинк 419,5
Чугун 1100-1300

Вернуться в раздел аналитики

Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

Какая температура нужна для того, чтобы за долю секунды расплавить или разрезать надвое щит из титана?

Владимир Замятин тут уже написал самый важный момент: для плавления важна не температура, а скорость подвода теплоты. Но автору вопроса этот ответ не понравился, и он начал возмущаться в комментариях. Такое иногда бывает, когда у человека сложности с концентрацией внимания, он не может усвоить материал, получить быстрый ответ на неправильно поставленный вопрос, и это вызывает агрессию. В некоторых странах детям прописывают специальные таблетки в таких случаях.

Вопрос возник явно не в результате чтения учебника физики, а скорее при просмотре каких-нибудь фантастических фильмов про супергероев. Хорошо, супергероям периодически нужно разрезать стены из титана, и вот в данном случае автор предположил, что достаточно иметь какой-то объект с определенной температурой (нужно только узнать с какой!) и если добавить немного кинетической энергии, задача будет решена и титановый щит будет  разрублен.

Сначала супергерой думал, что можно использовать разогретую руку своего роботского костюма, но потом оказалось, что это как-то неудобно и непрактично: делать костюм с тугоплавкими подогреваемыми руками, и он сделал раскаленный до 3000°С топор из вольфрама массой 100 кг. Ведь, логично, что 3000°С это больше, чем температура плавления титана 1670°С. Использовать разогретый топор из вольфрама можно только в космосе, на воздухе он просто сгорит, но работать в космосе для нашего супергероя — это не проблема.

Супергерой начинает рубить стену из титана раскаленным, светящимся ярким светом топором из вольфрама. И вдруг обнаруживает, что чтобы расплавить титан, ему приходится прислонять топор к щиту и долго его держать. Титан сначала нагревается от температуры холодного космоса до температуры 1670°С, на каждый моль (47 г) титана и на каждый градус требуется 25 джоулей. После того, как титан нагревается до температуры плавления, для того, чтобы из твердого титана с температурой 1670°С получился жидкий титан с температурой 1670°С требуется 18800 джоулей на моль.

  • Блин, а я об этом не подумал, — говорит наш супергерой, — я думал, после того, как температура достигает 1670°С, титан просто плавится и всё!

Нет, глупый супергерой, и тебе говорили в комментариях, что не нужно путать понятия тепла (энергии) и температуры.

Прикинем, сколько энергии у нас есть в топоре из вольфрама. Масса топора 100 кг — это 544 моля, удельная теплоемкость вольфрама 24,27 Дж/(моль·К). Это значит, что максимальное теоретическое количество тепла, которое может отдать вольфрамовый топор при охлаждении от 3000 до 1670°С будет 17558257 джоулей. Допустим, у нас температура титанового щита в космосе 0°С, тогда нам нужно 41750 Дж для нагрева 1 моля титана и 18800 Дж/моль для перевода его из твердое в жидкое состояние. То есть всей энергии, заключенной в 100 кг вольфрамовом топоре разогретом до 3000°С хватит на расплавление 13,6 кг титана. Но это в идеале, если бы энергию можно было бы целенаправленно передать от топора к титану. Реально же топор будет ежесекундно терять кучу энергии в виде излучения и остывать, скорость передачи тепла будет зависеть от разности температур, теплопроводности вольфрама (~150 Вт/м·К при 3000°С) и титана (~20 Вт/м·К), площади контакта. Энергия, подводимая от топора будет распределяться по всему щиту и излучаться в космос, но тут хорошо, что у титана ниже теплопроводность. Супергерой планировал это делать быстро, резать титан как масло горячим ножом, но нет, скорость передачи тепла ограничена, приходится надолго прикладывать топор и возить его туда-сюда по линии разреза. Любой, кто плавил олово паяльником представляет, как это выглядит.  В итоге может получиться расплавить пару килограммов титана, где-то продырявить щит.

Мы можем разогреть вольфрамовый топор еще  до 3695°С, это добавит нам еще килограмм расплавленного титана, но не изменит ситуацию принципиально. А выше у нас уже не будет никаких твердых материалов. Мы можем использовать более горячую плазму, но угадайте, что будет важно в этом случае? Плазма — это более разреженная субстанция, ее поток придется направлять на титановый щит, и в итоге это значит, что будет важна скорость подвода тепла, измеряемая в ваттах, а не градусах. Можем сделать резак из вольфрама, подогреваемый электроэнергией, но тут опять будет важна мощность и скорость подвода тепла.

В общем, априори супергерой считал, что эксперты the Question дауны, так и написал им в комментариях. Но апостериори оказалось, что он сам не вполне осознавал законы физики, которые ему нужны для решения этой задачи, и был недостаточно вежливым с людьми, которые могли ему помочь.

Температура плавления разных металлов в таблице

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму: она составляет 3422Со, самая низкая — у ртути: элемент плавится уже при — 39Со. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково — при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

Разделение металлов

В зависимости от температуры плавления металлы делятся на:

  1. Легкоплавкие: им необходимо не более 600Со. Это цинк, свинец, виснут, олово.
  2. Среднеплавкие: температура плавления колеблется от 600Со до 1600Со. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  3. Тугоплавкие: требуется температура свыше 1600Со, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.

  1. Увеличивается давление — увеличится величина плавления.
  2. Уменьшается давление — уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С

о )
Название элементаЛатинское обозначениеТемпературы
ПлавленияКипения
ОловоSn232 Со2600 Со
СвинецPb327 Со1750 Со
ЦинкZn420 Со907 Со
КалийK63,6 Со759 Со
НатрийNa97,8 Со883 Со
РтутьHg— 38,9 Со356.73 Со
ЦезийCs28,4 Со667.5 Со
ВисмутBi271,4 Со1564 Со
ПалладийPd327,5 Со1749 Со
ПолонийPo254 Со962 Со
КадмийCd321,07 Со767 Со
РубидийRb39,3 Со688 Со
ГаллийGa29,76 Со2204 Со
ИндийIn156,6 Со2072 Со
ТаллийTl304 Со1473 Со
ЛитийLi18,05 Со1342 Со

Таблица среднеплавких металлов и сплавов (от 600С

о до 1600С о )
Название элементаЛатинское обозначениеТемператураы
ПлавленияКипения
АлюминийAl660 Со2519 Со
ГерманийGe937 Со2830 Со
МагнийMg650 Со1100 Со
СереброAg960 Со2180 Со
ЗолотоAu1063 Со2660 Со
МедьCu1083 Со2580 Со
ЖелезоFe1539 Со2900 Со
КремнийSi1415 Со2350 Со
НикельNi1455 Со2913 Со
БарийBa727 Со1897 Со
БериллийBe1287 Со2471 Со
НептунийNp644 Со3901,85 Со
ПротактинийPa1572 Со4027 Со
ПлутонийPu640 Со3228 Со
АктинийAc1051 Со3198 Со
КальцийCa842 Со1484 Со
РадийRa700 Со1736,85 Со
КобальтCo1495 Со2927 Со
СурьмаSb630,63 Со1587 Со
СтронцийSr777 Со1382 Со
УранU1135 Со4131 Со
МарганецMn1246 Со2061 Со
Константин1260 Со
ДуралюминСплав алюминия, магния, меди и марганца650 Со
ИнварСплав никеля и железа1425 Со
ЛатуньСплав меди и цинка1000 Со
НейзильберСплав меди, цинка и никеля1100 Со
НихромСплав никеля, хрома, кремния, железа, марганца и алюминия1400 Со
СтальСплав железа и углерода1300 Со — 1500 Со
ФехральСплав хрома, железа, алюминия, марганца и кремния1460 Со
ЧугунСплав железа и углерода1100 Со — 1300 Со

Таблица тугоплавких металлов и сплавов (свыше 1600С

о )
Название элементаЛатинское обозначениеТемпературы
ПлавленияКипения
ВольфрамW3420 Со5555 Со
ТитанTi1680 Со3300 Со
ИридийIr2447 Со4428 Со
ОсмийOs3054 Со5012 Со
ПлатинаPt1769,3 Со3825 Со
РенийRe3186 Со5596 Со
ХромCr1907 Со2671 Со
РодийRh1964 Со3695 Со
РутенийRu2334 Со4150 Со
ГафнийHf2233 Со4603 Со
ТанталTa3017 Со5458 Со
ТехнецийTc2157 Со4265 Со
ТорийTh1750 Со4788 Со
ВанадийV1910 Со3407 Со
ЦирконийZr1855 Со4409 Со
НиобийNb2477 Со4744 Со
МолибденMo2623 Со4639 Со
Карбиды гафния3890 Со
Карбиды ниобия3760 Со
Карбиды титана3150 Со
Карбиды циркония3530 Со
Оцените статью: Поделитесь с друзьями!

Температурный коэффициент линейного расширения

Материал

Коэффициент линейного теплового расширения

10-6 °С-1

10-6 °F-1

ABS (акрилонитрил-бутадиен-стирол) термопласт73.841
ABS — стекло, армированное волокнами30.417
Акриловый материал, прессованный234130
Алмаз1.10.6
Алмаз технический1.20.67
Алюминий22.212.3
Ацеталь106.559.2
Ацеталь , армированный стекловолокном39.422
Ацетат целлюлозы (CA)13072.2
Ацетат бутират целлюлозы (CAB)25.214
Барий20.611.4
Бериллий11.56.4
Бериллиево-медный сплав (Cu 75, Be 25)16.79.3
Бетон14.58.0
Бетонные структуры9.85.5
Бронза18.010.0
Ванадий84.5
Висмут137.3
Вольфрам4.32.4
Гадолиний95
Гафний5.93.3
Германий6.13.4
Гольмий11.26.2
Гранит7.94.4
Графит, чистый7.94.4
Диспрозий9.95.5
Древесина, пихта, ель3.72.1
Древесина дуба, параллельно волокнам4.92.7
Древесина дуба , перпендикулярно волокнам5.43.0
Древесина, сосна52.8
Европий3519.4
Железо, чистое12.06.7
Железо, литое10.45.9
Железо, кованое11.36.3
Золото14.28.2
Известняк84.4
Инвар (сплав железа с никелем)1.50.8
Инконель (сплав)12.67.0
Иридий6.43.6
Иттербий26.314.6
Иттрий10.65.9
Кадмий3016.8
Калий8346.1 — 46.4
Кальций22.312.4
Каменная кладка4.7 — 9.02.6 — 5.0
Каучук, твердый7742.8
Кварц0.77 — 1.40.43 — 0.79
Керамическая плитка (черепица)5.93.3
Кирпич5.5
3.1
Кобальт126.7
Констанан (сплав)18.810.4
Корунд, спеченный6.53.6
Кремний5.12.8
Лантан12.16.7
Латунь18.710.4
Лед5128.3
Литий4625.6
Литая стальная решетка10.86.0
Лютеций9.95.5
Литой лист из акрилового пластика8145
Магний2514
Марганец
22
12.3
Медноникелевый сплав 30%16.29
Медь16.69.3
Молибден52.8
Монель-металл (никелево-медный сплав)13.57.5
Мрамор5.5 — 14.13.1 — 7.9
Мыльный камень (стеатит)8.54.7
Мышьяк4.72.6
Натрий7039.1
Нейлон, универсальный7240
Нейлон, Тип 11 (Type 11)10055.6
Нейлон, Тип 12 (Type 12)
80.5
44.7
Нейлон литой , Тип 6 (Type 6)8547.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав8044.4
Неодим9.65.3
Никель13.07.2
Ниобий (Columbium)73.9
Нитрат целлюлозы (CN)10055.6
Окись алюминия5.43.0
Олово23.413.0
Осмий52.8
Палладий11.86.6
Песчаник11.66.5
Платина9.05.0
Плутоний5430.2
Полиалломер91.550.8
Полиамид (PA)11061.1
Поливинилхлорид (PVC)50.428
Поливинилденфторид (PVDF)127.871
Поликарбонат (PC)70.239
Поликарбонат — армированный стекловолокном21.512
Полипропилен — армированный стекловолокном3218
Полистирол (PS)7038.9
Полисульфон (PSO)55.831
Полиуретан (PUR), жесткий
57.6
32
Полифенилен — армированный стекловолокном35.820
Полифенилен (PP), ненасыщенный90.550.3
Полиэстер123.569
Полиэстер, армированный стекловолокном2514
Полиэтилен (PE)200111
Полиэтилен — терефталий (PET)59.433
Празеодимий6.73.7
Припой 50 — 5024.013.4
Прометий116.1
Рений6.73.7
Родий84.5
Рутений9.15.1
Самарий12.77.1
Свинец28.015.1
Свинцово-оловянный сплав11.66.5
Селен3.82.1
Серебро19.510.7
Скандий10.25.7
Слюда31.7
Сплав твердый (Hard alloy) K2063.3
Сплав хастелой (Hastelloy) C11.36.3
Сталь13.07.3
Сталь нержавеющая аустенитная (304)17.39.6
Сталь нержавеющая аустенитная (310)14.48.0
Сталь нержавеющая аустенитная (316)16.08.9
Сталь нержавеющая ферритная (410)9.95.5
Стекло витринное (зеркальное, листовое)9.05.0
Стекло пирекс, пирекс4.02.2
Стекло тугоплавкое5.93.3
Строительный (известковый) раствор7.3 — 13.54.1-7.5
Стронций22.512.5
Сурьма10.45.8
Таллий29.916.6
Тантал6.53.6
Теллур36.920.5
Тербий10.35.7
Титан8.64.8
Торий126.7
Тулий13.37.4
Уран13.97.7
Фарфор3.6-4.52.0-2.5
Фенольно-альдегидный полимер без добавок8044.4
Фторэтилен пропилен (FEP)13575
Хлорированный поливинилхлорид (CPVC)66.637
Хром6.23.4
Цемент10.06.0
Церий5.22.9
Цинк29.716.5
Цирконий5.73.2
Шифер10.45.8
Штукатурка16.49.2
Эбонит76.642.8
Эпоксидная смола , литая резина и незаполненные продукты из них5531
Эрбий12.26.8
Этилен винилацетат (EVA)180100
Этилен и этилакрилат (EEA)205113.9

Эфир виниловый

16 — 228.7 — 12

Железо: химические свойства и температура плавления


Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов. В домашних условиях этого добиться не удастся. Температура плавления — это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании — при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:

  1. Солидус — линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус — окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения — точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

СТРУКТУРА

Две модификации кристаллической решетки железа

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a0 = 2,86). В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  • В интервале температур от самых низких до 910°С —а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  • В интервале температур от 910 до 1390°С — аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  • В интервале температур от 1390 до 1535°С (температура плавления) — д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла. В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей. При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Читать также: Картофелекопалка своими руками размеры чертёж картинки

Таблица температур плавления металлов и сплавов

НазваниеT пл, °C
Алюминий660,4
Медь1084,5
Олово231,9
Цинк419,5
Вольфрам3420
Никель1455
Серебро960
Золото1064,4
Платина1768
Титан1668
Дюралюминий650
Углеродистая сталь1100−1500
Чугун1110−1400
Железо1539
Ртуть-38,9
Мельхиор1170
Цирконий3530
Кремний1414
Нихром1400
Висмут271,4
Германий938,2
Жесть1300−1500
Бронза930−1140
Кобальт1494
Калий63
Натрий93,8
Латунь1000
Магний650
Марганец1246
Хром2130
Молибден2890
Свинец327,4
Бериллий1287
Победит3150
Фехраль1460
Сурьма630,6
карбид титана3150
карбид циркония3530
Галлий29,76

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность — возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа — Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Таблица прочности металлов

МеталлСопротивление, МПа
Медь200−250
Серебро150
Олово27
Золото120
Свинец18
Цинк120−140
Магний120−200
Железо200−300
Алюминий120
Титан580

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 — 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов. В домашних условиях этого добиться не удастся. Температура плавления — это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Читать также: Как измерить тестером ток в цепи

Железо и его свойства

Железо — это химический элемент, который в таблице Менделеева находится под номером 26. Это один из самых распространенных элементов во всей Солнечной системе. Согласно материалам исследований, в составе ядра Земли находится примерно 79−85% этого вещества. В земной коре его тоже присутствует большое количество, но оно уступает алюминию.

В чистом виде металл имеет белый цвет с чуть серебристым оттенком. Он пластичен, но имеющиеся в нем примеси могут определять его физические свойства. Реагирует на магнит.

Железо присутствует в воде. В речных водах его концентрация равна примерно 2 мг/л металла. В морской воде его содержание может быть ниже в сто или даже тысячу раз.

Оксид железа — это основная форма, добыча которой осуществляется и которая находится в природе. Оксидное железо может располагаться в самой верхней части земной коры и быть составляющей осадочных образований.

Элемент, находящийся на двадцать шестом месте в таблице Менделеева, может иметь несколько степеней окисления. Именно они определяют его геохимическую особенность нахождения в определенной среде. В ядре Земли металл присутствует в нейтральной форме.

Когда было открыто

История знакомства человека с железом начинается с Космоса. Судя по древним (например, древнеегипетским) названиям элемента, это было метеоритное железо. Хеттские тексты упоминают о нем как об «упавшем с неба».

Человек использует металл 6 тысяч лет.

Археологи откопали используемые древними шумерами и египтянами инструменты. Они сделаны из метеоритного железа.

Железные изделия завоевывали мир. Металлу посвящены стихи Гомеровой «Илиады», его упоминают Аристотель и Страбон.

Небесным происхождением обусловлено античное наименование железа: «сидер» («звездный»).

Ученые исследуют потенциал металла постоянно. Так, в 1868 году русский ученый Д. К. Чернов открыл кристаллические модификации вещества.

Добыча полезных ископаемых

Руд, в которых присутствует железо, существует несколько. Однако, в качестве сырья для производства железа в промышленности используют в основном следующие:

  • магнезитовую руду;
  • гетитовую руду;
  • гематитовую руду.

А также часто встречаются такие разновидности руды:

  • леллингит;
  • сидерит;
  • марказит;
  • ильменит;
  • ярозит.

Существует еще минерал под названием мелантерит. Его используют преимущественно в фармацевтической промышленности. Из себя он представляет зелёного цвета хрупкие кристаллы, в которых присутствует стеклянный блеск. Из него производят лекарственные препараты, в составе которых имеется ферум.

Основным месторождением этого металла является Южная Америка, а именно Бразилия.

ПРОИСХОЖДЕНИЕ

Самородное железо

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами. Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Плавление железа и необходимая температура

Точкой плавления металла называют такую минимальную температуру, при которой он переходит из твердого состояния в жидкое. При этом в объеме он практически остается неизменным.

Металл могут производить из руды различными способами, но самый основной из них — это доменный. Помимо доменного, используют еще выплавку железа при помощи обжига измельченной руды с примесью глины. Из полученной смеси формируют окатыши, которые обрабатываются в печи с последующим восстановлением водородом. Далее плавление железа осуществляется в электрической печи.

Температура плавления железа весьма высока. Для технически чистого элемента она составляет +1539 °C. В этом веществе присутствует примесь — Сера, которую можно извлечь лишь в жидком виде. Без примесей чистый материал получают при электролизе солей металла.

Классификация металлов по температуре плавления

Разные металлы могут переходить в жидкое состояние при разной температуре. Вследствие этого выделяют определённую классификацию. Их делят следующим образом:

  1. Легкоплавкие — те элементы, которые могут становиться жидкими уже при температуре ниже 600 градусов. К ним относят цинк, олово, свинец и пр. Их можно расплавить даже в домашних условиях — просто нужно разогреть при помощи плиты или паяльника. Такие виды нашли применение в технике и электронике. Они используются для соединения элементов из металла и движения электрического тока. Олово плавится при 232 градусах, а цинк — при 419 градусах.
  2. Среднеплавкие — элементы, которые начинают расплавляться при температуре от шестисот до тысячи шестисот градусов. Эти элементы используют по большей части для строительных элементов и металлоконструкций, то есть при создании арматур, плит и строительных блоков. В эту группу входят: железо, медь, алюминий. Температура плавления алюминия сравнительно низка и составляет 660 градусов. А вот железо начинает переходить в жидкое состояние лишь при температуре 1539 градусов. Это один из самых распространенных металлов, используемых в промышленности, особенно в автомобильной. Однако железо подвержено коррозии, то есть ржавчине, поэтому ему требуется специальная поверхностная обработка. Его необходимо покрывать краской или олифой, и не допускать попадание влаги.
  3. Тугоплавкие — это такие материалы, которые расплавляются и становятся жидкими при температуре выше 1600 градусов. В эту группу относят вольфрам, титан, платину, хром и т. п. Они используются в ядерной промышленности и для некоторых машинных деталей. Они могут применяться для расплавки других металлов, изготовления высоковольтных проводов или проволоки. Платину можно расплавить при 1769 градусах, а вольфрам — при 3420 °C.

Читать также: Какой редуктор для культиватора лучше

Единственный элемент, который при обычных условиях находится в жидком состоянии — это ртуть. Температура его плавления составляет минус 39 градусов и его пары являются ядовитыми, поэтому его используют только в лабораториях и закрытых ёмкостях.

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

ПРИМЕНЕНИЕ

Кольцо из железа

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства. Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов. Железо может входить в состав сплавов на основе других металлов — например, никелевых. Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п. Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса. Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей. Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат. Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве. Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах. Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

Молекулярный вес55.85 г/моль
Происхождение названиявозможно англо-саксонского происхождения
IMA статусдействителен, описан впервые до 1959 (до IMA)

Это интересно: Сталь 45: характеристики по ГОСТ и область применения

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Температура плавления металлов таблица по возрастанию

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия — 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения — 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути – она плавится даже при -39 °C, самая высокая у вольфрама – 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой – плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие – до 600 °C: свинец, цинк, олово;
  2. среднеплавкие – от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие – от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина – градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы – непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий – 660 °C;
  2. температура плавления меди – 1083 °C;
  3. температура плавления золота – 1063 °C;
  4. серебро – 960 °C;
  5. олово – 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец – 327 °C;
  7. температура плавления железо – 1539 °C;
  8. температура плавления стали (сплав железа и углерода) – от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) – от 1100 °C до 1300 °C;
  10. ртуть – -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл – ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия – 2519 °C , у железа – 2900 °C, у меди – 2580 °C, у ртути – 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов – у рения – 5596 °C . Наибольшая температура кипения – у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым – осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа – очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах – это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл – серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов . Температура плавления металла – температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное атмосферное давление не влияет .

Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов . Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).

Классификация металлов по температуре плавления

  1. Легкоплавкие металлы , температура плавления которых колеблется до 600 градусов Цельсия, например цинк, олово, висмут .
  2. Среднеплавкие металлы , которые плавятся при температуре от 600 до 1600 градусов Цельсия: такие как алюминий, медь, олово, железо .
  3. Тугоплавкие металлы , температура плавления которых достигает более 1600 градусов Цельсия – вольфрам, титан, хром и др.
  4. – единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов по Цельсию.

Таблица температур плавления металлов и сплавов

650

1000

Металл
Алюминий660,4
Вольфрам3420
Дюралюмин
Железо1539
Золото1063
Иридий2447
Калий63,6
Кремний1415
Латунь
Легкоплавкий сплав60,5
Магний650
Медь1084,5
Натрий97,8
Никель1455
Олово231,9
Платина1769,3
Ртуть–38,9
Свинец327,4
Серебро961,9
Сталь1300-1500
Цинк419,5
Чугун1100-1300

При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается .

Не стоит путать понятия «температура плавления металла» и «температура кипения металла» – для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях , разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму: она составляет 3422С о , самая низкая — у ртути: элемент плавится уже при — 39С о . Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково — при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

Разделение металлов

В зависимости от температуры плавления металлы делятся на:

  1. Легкоплавкие: им необходимо не более 600С о . Это цинк, свинец, виснут, олово.
  2. Среднеплавкие: температура плавления колеблется от 600С о до 1600С о . Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  3. Тугоплавкие: требуется температура свыше 1600С о , чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.

Какую температуру выдерживает керамика

Температура плавления керамики

Температура плавления керамики распространенных типов

В таблице представлены значения температуры плавления керамики различного состава. Температура плавления высокотемпературной керамики в таблице находится в интервале от 2000 до 4040°С.

Дана температура плавления следующих типов керамики (начиная с самой тугоплавкой): карбиды, бориды, силициды, оксиды, нитриды, сульфиды металлов (гафния, тантала, циркония, ниобия, титана, тория, кобальта, самария, лантана, иттрия, алюминия, урана, ванадия, вольфрама, бериллия, стронция, скандия, бария, гадолиния, молибдена, германия, неодима): HfC, TaC, NbC, HfB2, TiN, TiC, TaB2, TaN, NbB2, HfN, ZrN, TiB2, ThO2, ThN, CoO, NdB6, SmB6, LaB6, Ta4Si, MgO, Ta5Si3, UB4, SrO, CeS, BeO, Cr2O2, Nb5Si3, TaB, ThS, TaS, Nb2N, Y2O3, AlN, U2C, VB2, WB, UB2, VN, MoB, UC, La2O3, YC, W2B5, BeB6, YB6, CaC2, Th4S, TpS7, NbB,NbB4, VC, HfO2, W2B, W2C, UO2, WC, MoC, диоксид циркония ZrO2, ZrB12, YN, ThC2, ScN, UN, ScB2, Mo3B2, VB, Zr5Si3, UC2, SrB6, UB12, CaB6, BaB6, Ba3N2, ThB4, Be3N5, BaS, Be3N2, Ti2B, CrB2, TaSi2, Nd2S3, GeB6, WSi2, ThB6, ZrSi, Mo2B, NdS, Ti5Si3, GdB4, TpN4, MoB2, La2S3, V3B2, Al2O3, CrB, Ce3S4, MoSi2, TiO, Al2O3·BaO.

По данным таблицы можно выделить наиболее тугоплавкую керамику на основе карбидов гафния, тантала и циркония. Температура плавления такой керамики составляет величину от 3500 до 4040°С.

Источник:
Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

  • Свойства марганца: плотность, теплопроводность, теплоемкость
  • Теплопроводность, теплоемкость, свойства фреона-113 (R113, CCl2FCClF2)

Читайте также

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства h3O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна, теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Свойства смеси селитр (40% NaNO2, 53% KNO3, 7% NaNO3)

В таблице представлены теплофизические свойства высокотемпературного теплоносителя, состоящего из смеси селитр (нитратов). Свойства даны в…

Плотность льда и снега, теплопроводность, теплоемкость льда

Плотность, теплопроводность и теплоемкость льда в зависимости от температуры В таблице приведены значения плотности, теплопроводности,…

Теплопроводность, теплоемкость, плотность и другие свойства этилового спирта C2H5OH

Свойства жидкого этилового спирта на линии насыщения В таблице приведены следующие теплофизические свойства этилового спирта…

Теплофизические свойства теста и хлеба

Плотность теста и хлеба В таблице указаны значения плотности теста различных хлебобулочных изделий после таких…

Физические свойства ниобия Nb при различных температурах

Приведены физические свойства ниобия при различных температурах в твердом и жидком состояниях: плотность, теплоемкость, теплопроводность…

Теплопроводность воздуха в зависимости от температуры и давления

Коэффициент теплопроводности воздуха при давлении от 0,001 до 1000 атмосфер и при температурах от -198 до 5727°С.

Теплопроводность, плотность и другие физические свойства титана Ti

Сегодня титан является одним из наиболее популярных металлов. Сплавы титана находят применение во многих отраслях промышленности,…

Свойства шоколада и какао, температура кипения шоколада

Теплофизические свойства шоколада при различных температурах В таблице представлены теплофизические свойства шоколада при различных температурах. Свойства…

Коэффициенты температурного расширения металлов

В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от…


Керамическая посуда: за и против

Существует три основных вида покрытий для посуды: то, которое мы привыкли называть «тефлоновым» (что не совсем верно, зато смысл понятен), эмалевое (сейчас его можно встретить все реже и реже) и керамическое. Если с первыми двумя мы знакомы достаточно хорошо, то последнее, керамическое покрытие, вошло в обиход сравнительно недавно. Но позиции его уже довольно прочны. А вот прочно ли оно само.

Плюсы

Преимуществ у керамики немало. К примеру, она выдерживает температуру нагрева до 450 °С. Для сравнения: посуду с тефлоновым покрытием можно нагревать без ущерба для ее свойств лишь до 250 °С. Керамическое покрытие – гладкое и идеально ровное – превращает процесс мытья посуды в детскую забаву: протер влажной тряпочкой, вытер насухо полотенцем – и готово. Недаром в Европе керамику относят к категории easy-clean, то есть легкой в уходе. Одна из причин, по которой посуда с керамическим покрытием пользуется такой популярностью, – это возможность готовить на ней без масла. Нужно ли говорить, насколько отрадна эта новость для следящих за фигурой? Наконец, посуда с керамическим покрытием выпускается в такой богатой цветовой гамме, что радуга меркнет на ее фоне. Яркие цвета возбуждают аппетит – доказано!

Минусы

К сожалению, антипригарные свойства керамического покрытия, на начальном этапе использования посуды часто даже превосходящие тефлон, достаточно быстро начинают сдавать позиции… Если вы планируете оставить ее своим детям и внукам, придется вас разочаровать. Кроме того, далеко не всю посуду с таким покрытием можно мыть в посудомоечной машине. Внимательно читайте рекомендации производителя перед покупкой. Но выбор – личное дело каждого. Что предпочесть: приготовление пищи без масла, легкое мытье и абсолютную экологичность или лишние 5 лет службы посуды? Вам решать.

Керамическая посуда: как с ней обращаться
  • Запаситесь силиконовыми лопатками и ложками, а также мягкими губками.
  • Не ставьте посуду на плиту или на стол «в сердцах», с силой – давайте будем нежнее.
  • Покупайте посуду от известного и, главное, специализирующегося на этих покрытиях производителя.
  • Выбирайте изделие тяжелее и толще – оно будет равномернее нагреваться и дольше отдавать тепло. Это хорошо с кулинарной точки зрения. Кроме того, изделия из тонкого металла, при резком перепаде температур, например, при мгновенном охлаждении под струей воды, могут деформироваться.

Марки керамической посуды

Одним из первых покрытий, пришедших на наши кухни, был Thermolon (от GreenPan и Welen). Исходные материалы для него: кремний, кислород и углерод. Из школьной химии вспоминаем, что это песок. Покрытие нейтрально ко всем видам продуктов, то есть можно и готовить, и хранить еду.

Покрытие Ecolon (от Frybest)позиционируется как абсолютно безопасное для человека и окружающей среды – при его производстве не используются тяжелые металлы, а только «дружественные» природные компоненты. Инструкция разрешает использование металлических аксессуаров.

Покрытие Сeramiсa (от Moneta). Данный производитель предлагает добротную посуду от бюджетной, но довольно тонкой, до той, что подороже и с толстенькими стенками. Есть модельный ряд квадратной посуды Forma 2 – стильно и красиво.

Керамическое покрытие от Tefal не содержит ПФОА (перфтороктановую кислоту). Непосредственно при производстве данное вещество используется – производитель этого факта не скрывает, однако при обжиге оно улетучивается и в готовом продукте отсутствует совершенно, что подтверждают исследования.

Разумеется, это далеко не полный перечень производителей. Однако какую бы марку вы ни выбрали, помните главное: керамика требует бережного отношения.


Мосгончар +7 (495) 971-86-78

Температурный режим обжига керамики этапы обжига

Обжиг керамики подразделяется на несколько этапов в зависимости от температуры нагрева печи.

20 — 100
На начальном этапе разогрева происходит удаление влаги из глины или другой керамической массы. Разогрев должен проходить медленно. Самое главное — соблюдать равномерность нагрева. Скорость нагрева определяется толщиной стенок изделия: чем толще стенки, тем медленнее должен быть нагрев.

100 — 200
На этом этапе продолжается процесс удаление влаги из массы все еще продолжается. Важно помнить, что показания температуры на приборе, как правило, выше температуры самого изделия, особенно в толще или если изделие расположено на толстой подставке, которая поглощает часть тепла. Также начинается усадка глазурей. В этот промежуток нагрева, поскольку из изделия все еще выпаривается вода, глазурное покрытие подвержено риску растрескивания или фрагментарных сколов. Нагрев должен быть равномерным, так как из люстровых покрытий выделяются летучие органические соединения.

200 — 400
В этом интервале выгорают органические соединения. Хороший приток воздуха особенно необходим, если содержание в массе органических вещество высоко (деколи, люстры, связующее надглазурных красок и мастик).

550 — 600
При разогреве печи до этих температур происходит фазовое превращение кварца, которое характеризуется скачкообразными изменениями внутренней энергии вещества и, соответственно его плотности, а также теплоемкости, сжимаемости и коэффициента термического расширения. Поэтому на стадии охлаждения керамика может потрескаться (т.н. «холодный» треск).

400 — 900
В этом промежутке из глины выделяется химически связанная вода, а также разлагается ряд содержащихся в ней минералов. Также разлагаются хлористые и азотнокислые соли.

600 — 800
При этих температурах начинается расплавление надглазурных покрытий, а также легкоплавких флюсов (свинцовых и других).

750 — 800
В этом интервале, который иногда называют третьим декорирующим обжигом, происходит выгорание сульфидов, а также размягчение поверхности глазури и диффузия красок, золота и т.п.

850 — 950
В этом интервале происходит разложение содержащихся в керамической массе мела и/или доломита. Начинается взаимодействия составной части керамической массы — кремнезема — с карбонатом кальция и магния. Эти процессы сопровождаются выделениями углекислого газа.
На этом этапе также заканчиваются все превращения глинистых веществ: прочность черепка обеспечивается за счет спекания самых мелких частиц.
К концу интервала майоликовых глазури, как правило, уже полностью расплавляются.

1000 -1100
На этом этапе происходит уплотнение и деформация черепка, начинают размягчатся полевые шпаты.
Жидкая фаза появляется как результат интенсивного взаимодействия кремнезема и извести.
Также интенсивно разлагаются сульфаты, что сопровождается выделением сернистого газа.
Происходит плавление нефелин-сиенита.

1200 -1250
В данном интервале спекаются фаянсовые и беложгущиеся керамические массы.
В расплаве полевого шпата растворяются кремнезем и каолинит.

1280 — 1350
В этом температурном интервале иглы муллита пронизывают фарфоровую массу, что после выхода из обжига является основой высокой прочности и термостойкости. Процесс носит название муллитообразования.
Также тонкодисперсный кварц преобразуется в кристобаллит.

1200 — 1420
Этот интервал используется для обжига фарфора. При таких высоких температурах диффузия происходит очень быстро. Также при таких температурах, если обеспечены необходимые окислительно-восстановительные условия обжига, происходят процессы восстановления рыжих оксидов железа в более благородные голубые.

ОСТЫВАНИЕ

1420 — 1000
Масса и глазури пребывают в достаточно пластичном состоянии, таким образом изделие охлаждают так быстро, насколько позволяют технические характеристики печи.
Если использовать глазури, склонные к кристаллизации, то медленное охлаждение или выдержка до 10 часов в этом интервале, как правило, приведет к росту кристаллов.

1000 — 700
Здесь начинается окисление марганца, низших оксидов меди и прочих металлов, если таковые содержатся в составе, в высшие.
Недостаток кислорода в печи может дать поверхности изделия металлизацию. Если запланировано восстановление, то его нужно производить именно в этом интервале. Восстановительную среду нужно поддерживать как минимум до 250-300С, а лучше до почти комнатных температур.

900 — 750
Масса (черепок) и глазурь перешли в хрупкое состояние и остывают уже как единое целое. Если КТР не согласованы, то возможны отскок глазури, цек и даже повреждение изделия.

600 — 550
На этом этапе происходит обратное фазовое превращение кварца с резким объемным изменением. Слишком быстрое прохождение этого интервала может вызвать «холодный» треск.

300 — 200
В этом интервале происходит фазовое превращение кристобаллита. Он образовался при температуре 1250 — 1300, если в массе был очень тонкодисперсный кремнезем. Дверь печи не нужно открывать быстро.

250 — 100
В этом интервале продолжается охлаждение. В толстых частях изделий, а также в глубине печи температура гораздо выше, чем в тонких частях и чем показывает измерительный элемент. Изделиям необходимо дать остыть равномерно.


Какую температуру выдерживает керамика

Огнеупорность — способность материала противостоять, не расплавляясь, действию высоких температур.

Характеризуется она температурой, при которой стандартный образец в виде трехгранной усеченной пирамиды при нагревании в печи но заданному режиму размягчается и, оседая, касается своей вершиной подставки, на которой он укреплен.

Характеризуемые этим показателем материалы подразделяются на легкоплавкие (менее 1350°), тугоплавкие (1350-1580°) и огнеупорные (более 1580°), которые в свою очередь подразделяются на собственно огнеупорные (от 1580 до 1770°), высокоогнеупорные (от 1770 до 2000°) и высшей огнеупорности (выше 2000°).

Из керамических материалов и изделий к огнеупорным можно отнести шамотные (огнеупорность 1610-1750°) огнеупоры.

Термостойкость — свойство материала не растрескиваться при резких и многократных изменениях температуры.

Она повышается по мере уменьшения относительного температурного коэффициента линейного расширения материала и приобретения им однородной структуры.

Термостойкость усиливается глазурованием. Надлежащей термической стойкостью должны обладать плитки для внутренней облицовки стен, встроенные детали, канализационные трубы и др.

Морозостойкость — способность материала в насыщенном водой состоянии выдерживать требуемое по условиям долговечности число циклов попеременного замораживания и оттаивания. Материал считается морозостойким, если он после испытания по заданному режиму не утратил своей прочности или снизил ее не более чем на 25% и потерял в весе не более 5%.

Оценка по морозостойкости имеет большое значение для стеновых, кровельных, дорожных материалов, а также для материалов, применяемых при устройстве наружной облицовки. Этот показатель свойств регламентируется соответствующими нормативными документами.

Например, морозостойкость кирпича строительного легкого должна быть не менее 10 циклов, киряича глиняного обыкновенного, лекального, а также стеновых камней — не менее 15 циклов и т. д.

Для повышения морозостойкости кирпича весьма важное значение имеют однородность глиняной массы, отсутствие в ней легкорастворимых солей, отсутствие свилеватости (волнообразной слоистости) при формовании, правильно выбранные режимы сушки и обжига, обеспечивающие получение изделий без трещин. Морозостойкость может быть повышена также введением в шихту выгорающих добавок, переходом на изготовление пустотелого кирпича. Испытание на морозостойкость является обязательным для всех фасадных облицовочных материалов.

Термическое расширение — свойство материала увеличивать свои размеры при нагревании. Это свойство керамических материалов встречается при устройстве футеровок вращающихся печей, вагранок, сводов туннельных, кольцевых и других печей с применением при этом глин, каолинов, различных видов шамотных изделий.

При подборе керамических масс и глазурей для них одним из основных параметров является относительный температурный коэффициент линейного расширения (?), а также относительный температурный коэффициент объемного расширения материалов (?), определяемые по формулам:

где l, l1, ?, v1 — соответственно начальные и конечные линейные размеры и объемы образца в температурном диапазоне определения ? и ?, t. t1 —начальная и конечная температура в диапазоне определения.

В таблице ниже приведены значения относительного температурного коэффициента линейного расширения для не которых материалов.

В интервале температур от 20 до 1000° средний относительный температурный коэффициент линейного расширения фарфора 30· 10 -7 , фаянса 47-58 · 10 -7 .


ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

Главное меню

Навигация по записям

Ученые открыли самый жаропрочный материал с температурой плавления выше 4000 градусов Цельсия

Исследователи из Имперского колледжа в Лондоне (Imperial College of London) обнаружили, что смесь карбида тантала и карбида гафния в определенных пропорциях является материалом, имеющим самую высокую температуру плавления среди всех известных людям материалов. Точка плавления этого композитного керамического материала вплотную приблизилась к отметке в 4 тысячи градусов Цельсия, и это позволит создать на базе такой керамики новый класс жаропрочных материалов, выступающих в качестве тепловой защиты космических кораблей и будущих гиперзвуковых авиалайнеров.

Карбид тантала (TaC) и карбид гафния (HfC) являются высокостабильными химическими соединениями, способные, помимо чрезвычайно высокой температуры, выдержать еще целый ряд экстремальных неблагоприятных факторов, которые присутствуют в перегретой среде активных зон атомных реакторов, к примеру.

До последнего времени у ученых отсутствовала возможность точного измерения температуры точки плавления композитных керамических материалов на основе карбида тантала и карбида гафния, традиционными методами удавалось измерить лишь температуру точки плавления каждого из этих материалов в отдельности и самых низкотемпературных вариантов их комбинаций.

В своих исследованиях ученые из Лондона использовали чистые карбид тантала, карбид гафния, и три вида их “керамического сплава” Ta1?xHfxC, при x = 0.8, 0.5 и 0.2. А для измерения температур точек плавления этих материалов использовалась специально для этого разработанная технология лазерного нагрева.

Для нагрева керамического материала использовалась последовательность из четырех лазерных импульсов. Первым импульсом был самый низкоэнергетический импульс, длительность которого составляла около 1000 миллисекунд. Мощность каждого последующего импульса увеличивалась, с одновременным уменьшением его длительности на несколько сотен миллисекунд. Такой плавный и многоэтапный разогрев материала был необходим для минимизации возникающих тепловых напряжений в материале и снижения риска механического разрушения испытуемых образцов.

Полученные учеными результаты полностью подтверждают результаты предыдущих исследований. Согласно этим результатам чистый карбид тантала плавится при температуре 3768 градусов Цельсия, а температура плавления карбида гафния составляет 3958 градусов Цельсия. Самую высокую температуру точки плавления имеет композитный керамический материал HfC0.98, который плавится при температуре 3959 градусов Цельсия, и этот материал является самым тугоплавким материалом на сегодняшний день.

В ближайшем времени ученые планируют проведение подобных исследований по отношению к композитным керамическим материалам с другим процентным содержанием исходных компонентов. Кроме этого, планируется произвести исследования материалов, состоящих из четырех типов атомов Ta-Hf-C-N, которые, согласно теории, должны иметь еще большую температуру плавления нежели материалы на основе трех типов атомов Ta-Hf-C.


фактов о титане | Живая наука

Есть ли какой-нибудь элемент, напоминающий о силе, как титан? Названный в честь титанов, греческих богов мифов, 22-й элемент периодической таблицы появляется в авиалайнерах и палках для лакросса, пирсинге, медицинском оборудовании и даже солнцезащитном креме.

Титан устойчив к коррозии, отличается особой прочностью и легкостью. По данным Лос-Аламосской национальной лаборатории, он прочен, как сталь, но его вес составляет всего 45 процентов.И он вдвое прочнее алюминия, но только на 60 процентов тяжелее.

Только факты

  • Атомный номер (количество протонов в ядре): 22
  • Атомный символ (в Периодической таблице элементов): Ti
  • Атомный вес (средняя масса атома): 47,867
  • Плотность : 4,5 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 3034,4 градуса по Фаренгейту (1668 градусов Цельсия)
  • Точка кипения: 5948.6 F (3287 C)
  • Количество изотопов: 18; пять из них стабильны
  • Наиболее распространенные изотопы: Титан-46, Титан-47, Титан-48, Титан-49 и Титан-50

(Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

Элемент супергероя

Для элемента, обладающего сверхспособностями, титан имеет подходящую историю происхождения: он выкован в недрах сверхновых звезд или коллапсирующих звезд. Исследование конкретной умирающей звезды, Supernova 1987A, в 2012 году показало, что одна сверхновая может создать по массе титан-44, радиоактивный изотоп титана, стоимостью в 100 земных земных.

Титан является девятым по распространенности металлом в земной коре, согласно Chemicool, но он не был открыт до 1791 года. Английский геолог-любитель преподобный Уильям Грегор обнаружил черный металлический песок в русле ручья, проанализировал его и обнаружил быть смесью магнетита, обычной формы оксида железа и нового металла. Грегор назвал его манакканитом в честь прихода, в котором он обнаружил песок.

Четыре года спустя немецкий ученый по имени Мартин Генрих Клапрот изучал руду из Венгрии, когда он обнаружил, что она содержит никогда ранее не описанный химический элемент.Он назвал его титаном, а позже подтвердил, что манакканит Грегора тоже содержал титан.

Первым, кто перегонял титан в чистую форму, был М.А. Хантер, сотрудник General Electric, по данным Королевского химического общества (RSC). Однако только в 1930-х годах Уильям Дж. Кролл изобрел процесс, который сделал возможным извлечение титана в промышленных масштабах. Так называемый процесс Кролла сначала обрабатывает руду из оксида титана хлором с образованием хлорида титана.Затем магний или натрий смешиваются с хлоридом титана в газообразном аргоне (пропуск кислорода в процесс действительно был бы довольно взрывоопасным, учитывая, что титан очень реактивен по отношению к кислороду, согласно RSC). При температуре 2192 F (1200 C) магний или натрий восстанавливают хлорид титана до чистого титана. По данным RSC, этот процесс примерно в 10 000 раз менее эффективен, чем процесс, используемый для производства железа, что помогает объяснить, почему титан является более дорогим металлом.

Титан — переходный металл, что означает, что он может образовывать связи, используя электроны более чем с одной из своих оболочек или уровней энергии. Он разделяет эту особенность с другими переходными металлами, включая золото, медь и ртуть.

Кто знал?

  • По данным RSC, почти каждая магматическая порода — горная порода, образовавшаяся в результате затвердевания расплавленной породы — содержит титан.
  • По данным компании, Boeing 737 Dreamliner на 15 процентов состоит из титана.
  • Титан сейчас вращается вокруг планеты: по данным НАСА, у Международной космической станции (МКС) есть ряд деталей из титана, включая трубы.Rosetta Project, исследовательское и архивное предприятие, целью которого является сохранение человеческих языков и мышления, также вывезло кусок чистого титана за пределы МКС, чтобы увидеть, как он противостоит радиации и суровым условиям космоса.
  • Земля — ​​не единственное место, где можно найти титан. В 2011 году на спутниковой карте поверхности Луны были обнаружены скопления богатых титаном горных пород. Эти породы часто содержат до 10 процентов титана по сравнению с 1 процентом или около того, которые обычно наблюдаются в земных породах.
  • Титан можно использовать в качестве сырья для 3D-печати. В 2013 году исследователи из Австралийской организации научных и промышленных исследований Содружества Наций напечатали на 3D-принтере пару легких титановых подков для скаковых лошадей. Туфли были стильного ярко-розового цвета.

Диоксид титана

Диоксид титана (TiO 2 ), также называемый оксидом титана (IV) или диоксидом титана, представляет собой встречающийся в природе оксид титана. Белый пигмент, диоксид титана, используется в красках (как титановый белила или пигментный белый 6) и в солнцезащитных кремах из-за его способности преломлять свет и поглощать ультрафиолетовые лучи.По данным Геологической службы США, 95 процентов добываемого титана превращается в пигменты из диоксида титана, а оставшиеся 5 процентов идут на производство химикатов, металлов, карбидов и покрытий.

Диоксид титана также широко используется в медицине, косметике и зубной пасте и все чаще используется в качестве пищевой добавки (как E171) для отбеливания продуктов или придания им более непрозрачного вида. Некоторые из наиболее распространенных пищевых продуктов с добавлением E171 включают глазурь, жевательную резинку, зефир и добавки.

Нет ограничений на использование диоксида титана в пищевых продуктах. Однако новое исследование на мышах, опубликованное в журнале Gut, показывает, что частицы диоксида титана могут сильно повредить кишечник людей с определенными воспалительными заболеваниями кишечника.

Исследователи из Цюрихского университета в Швейцарии обнаружили, что, когда клетки кишечника поглощают частицы диоксида титана, слизистая оболочка кишечника мышей, у которых был колит, воспаляется и повреждается, говорится в пресс-релизе исследования.

Воспалительные заболевания кишечника, такие как болезнь Крона и язвенный колит, в течение многих лет увеличивались в западных странах. Эти состояния характеризуются крайней аутоиммунной реакцией на кишечную флору. Несколько факторов играют роль в развитии болезни, включая генетические факторы и факторы окружающей среды, такие как образ жизни и питание. Швейцарские исследователи обнаружили, что наночастицы диоксида титана, обычно содержащиеся в зубной пасте и многих пищевых продуктах, могут еще больше усугубить эту воспалительную реакцию.

Кроме того, более высокие концентрации частиц диоксида титана могут быть обнаружены в крови пациентов с язвенным колитом. Это означает, что эти частицы могут абсорбироваться из пищи при определенных заболеваниях, объясняют исследователи в пресс-релизе.

Хотя результаты еще не были подтверждены на людях, исследователи предполагают, что пациентам с колитом следует избегать приема внутрь частиц диоксида титана.

Титан — легкий и прочный металл, часто используемый в машинах, инструментах, спортивном снаряжении и ювелирных изделиях.(Изображение предоставлено Кристианом Лагереком Shutterstock)

Текущее исследование

Диоксид титана имел головокружительный набор функций в мире технологий, от приложений солнечных батарей до биосовместимых датчиков, сказал Джей Нараян, ученый-материаловед из Университета Северной Каролины.

В 2012 году Нараян и его коллеги сообщили о способе «настройки» диоксида титана, адаптируя его к конкретным приложениям. Этот материал имеет две кристаллические структуры, называемые «рутил» и «анатаз», каждая из которых имеет свои собственные свойства и функции.Обычно диоксид титана любит находиться в фазе анатаза при температуре ниже 932 F (500 C) и превращается в фазу рутила при более высоких температурах.

Выращивая кристалл за кристаллом диоксида титана и выстраивая их на шаблоне из триоксида титана, Нараян и его коллеги смогли установить фазу материала как рутил или анатаз при комнатной температуре, как они сообщили в июне 2012 года в журнал Applied Physics Letters. Сделав еще больший скачок, исследователи смогли интегрировать этот диоксид титана в компьютерные чипы.

«Оксид титана также является очень хорошим сенсорным материалом, поэтому, если он интегрирован с компьютерным чипом, он действует как интеллектуальный датчик», — сказал Нараян Live Science. Поскольку датчик является частью микросхемы, устройство может реагировать быстрее и эффективнее, чем если бы датчик был отдельным и должен был быть жестко подключен к вычислительной части устройства.

Вывод продукта на рынок потребует снижения производственных затрат, сказал Нараян, но у «настраиваемого» диоксида титана есть и другие перспективы.Обрабатывая материал мощными лазерными импульсами, исследователи могут создавать небольшие дефекты, называемые кислородными вакансиями, где в материале отсутствуют молекулы кислорода. Затем этот материал можно использовать для расщепления воды (h3O) путем похищения кислорода и оставления водорода, который затем можно использовать для производства водородного топлива.

«Это дешевый и чистый источник энергии», — сказал Нараян. Новые производственные и инженерные методы расширяют возможности использования титана. Управление военно-морских исследований объявило в 2012 году, что новый метод сварки титана будет использован для производства полноразмерного корпуса корабля; По мнению ВМФ, эта конструкция является прорывом, поскольку титан, как правило, слишком дорог и сложен в производстве для судостроения.Новый метод, называемый сваркой трением с перемешиванием, использует вращающийся металлический штифт для частичного плавления краев двух кусков титана вместе.

В медицине титановые имплантаты используются для замены или стабилизации сломанной кости. Крошечные титановые имплантаты используются даже для улучшения слуха у людей с некоторыми типами глухоты. Титановый стержень в форме винта просверливается в черепе за ухом и прикрепляется к внешнему блоку обработки звука. Внешний блок улавливает звуки и передает вибрацию через титановый имплант во внутреннее ухо, обходя любые проблемы в среднем ухе.

В 2010 году исследователи объявили о разработке «Tifoam» — пенополиуретана, пропитанного порошком титана. Согласно исследованию 2013 года, опубликованному в журнале Acta Biomaterialia, пористая структура имитирует человеческую кость и позволяет клеткам человеческой кости проникать и сливаться с имплантатом по мере заживления человека.

Дополнительный отчет от Трейси Педерсен, сотрудника Live Science.

Следуйте за Стефани Паппас на Twitter Google+ .Следуйте за нами @livescience , Facebook и Google+ .

Дополнительные ресурсы

Физические свойства титана и его сплавов

Титан легкий, прочный, устойчивый к коррозии и богатый природой. Титан и его сплавы обладают пределом прочности на разрыв от 30 000 до 200 000 фунтов на квадратный дюйм (210–1380 МПа), что эквивалентно прочности большинства легированных сталей.Плотность титана составляет всего 56 процентов от плотности стали, а его коррозионная стойкость сопоставима с сопротивлением платины. Из всех элементов земной коры титан занимает девятое место по численности.
Титан имеет высокую температуру плавления — 3135 ° F (1725 ° C). Эта точка плавления примерно на 400 ° F (220 ° C) выше точки плавления стали и примерно на 2000 ° F (1100 ° C) выше, чем у алюминия.

Титан легкий, прочный, устойчивый к коррозии и богатый природой.Титан и его сплавы обладают пределом прочности на разрыв от 30 000 до 200 000 фунтов на квадратный дюйм. (210-1380 МПа), что эквивалентно прочности большинства легированных сталей. Плотность титана составляет всего 56 процентов от плотности стали, а его коррозионная стойкость. хорошо сравнивается с платиной. Из всех элементов земной коры, титан занимает девятое место по распространенности.

Физические свойства

Если все элементы собраны в порядке атомного номера, можно заметить, что существует связь в свойствах, соответствующая атомному номеру.

Титан находится в четвертой колонке вместе с химически подобными цирконием, гафнием, и торий. Поэтому неудивительно, что титан будет обладать некоторыми свойства аналогичны найденным в этих металлах.

Титан имеет два электрона в третьей оболочке и два электрона в четвертой оболочке. Когда такое расположение электронов, когда внешние оболочки заполняются раньше, чем внутренние оболочки полностью заняты, встречается в металле, он известен как переходный металл.Такое расположение электронов отвечает за уникальные физические свойства титан. Чтобы упомянуть несколько, обнаружены хром, марганец, железо, кобальт и никель. в переходной серии.

Атомный вес титана 47,88, а алюминия 26,97. и железо 55,84.

Кристаллическую структуру можно представить как физически однородное твердое тело, в котором атомы расположены в повторяющемся узоре.Эта аранжировка играет важную роль в физическое поведение металла. Большинство металлов имеют либо объемно-центрированную кубическую форму, либо гранецентрированная кубическая или гексагонально-плотноупакованная структура.

Титан имеет высокую температуру плавления — 3135 ° F (1725 ° C). Эта точка плавления равна примерно на 400 ° F выше точки плавления стали и примерно на 2000 ° F выше алюминия.

Теплопроводность. Способность металла проводить или передавать тепло называется его теплопроводностью.Таким образом, материал, который должен быть хорошим изолятором, будет иметь низкую теплопроводность, тогда как радиатор будет иметь высокий коэффициент проводимости для рассеивания тепла. Физик определил бы это явление как скорость передачи проводимости через единицу толщины через единицу площадь для единичного температурного градиента.

Линейный коэффициент расширения. Нагрев металла до температуры ниже его точки плавления заставляет его расширяться или увеличиваться в длине.Если штанга или штанга равномерно нагревается по всей длине, каждая единица длины стержня увеличивается. Это увеличение на единицу длины на градус повышения температуры называется коэффициентом линейного расширения. Где металл будет попеременно подвергаться ударам и ударам. циклы охлаждения и должны поддерживать определенный допуск размеров, низкий коэффициент теплового расширения желательно. При контакте с металлом другого коэффициент, это соображение приобретает большее значение.

Титан имеет низкий коэффициент линейного расширения, равный 5,0×10 -6 дюйм на дюйм / ° F, тогда как из нержавеющей стали 7,8×10 -6 , медь 16,5×10 -6 и алюминий 12,9×10 -6 .

Электропроводность и удельное сопротивление. Поток электронов через металл из-за падения потенциала, известного как электрическая проводимость. В атомная структура металла сильно влияет на его электрическое поведение.

Титан плохо проводит электричество. Если проводимость меди равна Считается, что титан 100% имеет проводимость 3,1%. Из этого следует этот титан не будет использоваться там, где важна хорошая проводимость. Для для сравнения: нержавеющая сталь имеет проводимость 3,5%, а алюминий — проводимость. 30%.

Электрическое сопротивление — это сопротивление материала потоку электронов.Поскольку титан — плохой проводник, значит, это хороший резистор.

Магнитные свойства. Если металл находится в магнитном поле, на него действует сила. Интенсивность намагничивания, называемая M, может быть измерена с точки зрения действующей силы и ее отношения к напряженности магнитного поля, H, в зависимости от восприимчивости K, которая является свойством металла.

Металлы имеют широкий разброс по восприимчивости, и их можно разделить на три группы:

  • Диамагнитные вещества, в которых K мало и отрицательно, и поэтому слабо отталкивается магнитным полем; примерами являются медь, серебро, золото и висмут.
  • Парамагнитные вещества, в которых K мало и положительно, и поэтому слегка притягивается магнитным полем; щелочные, щелочные и неферромагнитные переходные металлы попадают в эту группу (видно, что титан незначительно парамагнитный).
  • Ферромагнетики, имеющие большое значение K и положительные; железо, кобальт, никель и галлий подпадают под эту позицию.
Важная особенность группы 3, помимо сильного притяжения в магнитном поле, заключается в том, что эти металлы сохраняют свою намагниченность после удаления из магнитное поле.

Теперь указаны наиболее важные физические свойства титана.

ТИТАН

ТИТАН

ТИТАН

от латинского титанов что означает «первые сыновья земли»

Взрывающаяся титановая звезда. Нажмите на изображение, чтобы узнать больше!

Интересные факты о титане:

Обнаружен титан в 1791 г.Грегора, но имя ему было присвоено только в 1795 году. Это был первый изолирован Хантером в 1910 году путем нагревания TiCl4 с натрием в стальной бомбе на температура от 700-800 С. Вот и жарко!

Титан — девятый самый распространенный металл в земной коре. Это много титана!

Это всего около 6 долларов купить фунт титана. Это меньше, чем в кино! Это больше похоже на попкорн и поп в кино. черт возьми, я бы просто получил немного титан.

атомный номер: 22

атомная масса: 47.867 г

общих степеней окисления: 2,3,4

Внешний вид: красивый блестящий белый металл

точка плавления: 1660 градусы C

точка кипения: 3287 градусы C

кристаллическая структура: шестиугольник с максимальной плотностью упаковки

мсметлист>

плотность: 4507 кг м3

мсписок>

электроотрицательность: 1.54 Полинг агрегаты

электронная конфигурация в основном состоянии: [Ar] 3d24s2

источник: Титан существует в основном в земной коре, но также может быть найден на Солнце. и метеориты. Металлический титан перед использованием очищают. Он удален из TiFeO3 или TiO2 по методу Кролла, который использует следующие реакции:

2TiFeO3 + 7Cl2 + 6C (900 В) —> 2TiCl4 + 2FeCl3 + 6CO

TiCl4 + 2Mg (1100 ° С) —-> 2 MgCl2 + Ti

«Это ты железная дубинка? Ха! неудачник.«

«Клуб Тигр

»

Tiger Woods — большой поклонник титана. Нажми на ссылка выше чтобы узнать больше о Тайгере Вудсе.

Стань профессиональным игроком в гольф! Купить титановые клюшки для гольфа

Свойства и применение: Титан прочен, легко изготовлены, устойчивы к коррозии и имеют очень низкую плотность. Эти свойства делают его сплавы полезными в самолетах и ​​ракетах из-за их легкий вес и способность выдерживать экстремальные температуры.Это также популярны в производстве велосипедов и даже в ювелирных изделиях. Он такой же сильный, как сталь, но на 45% легче. Сейчас Тайгер Вудс использует его в гольф-клубах. Он содержится в красках для дома, дымовых завесах и в установках по опреснению воды. Титан горит в воздух, и это единственный элемент, который горит в азоте. Это часто используется в фейерверк. На самом деле, многие фейерверки — это просто перхлорат калия. (KClO4) в смеси с чистым металлическим титаном. Очень простой процесс, В самом деле.Похоже на забавную лабораторию!

Для получения дополнительной информации о титан, который вы, возможно, захотите узнать:

http://www.titanium.org

Физические свойства титана | Огнеупорные металлы и сплавы

Физические свойства титана



Просмотры сообщений: 1,578

Титан — это серебристо-белый переходный металл , который отличается легкостью, высокой прочностью и металлическим блеском.Титана относительно много в земной коре, и он занимает 10-е место среди всех элементов. Однако титан считается редким металлом, поскольку его присутствие в природе относительно рассредоточено и его трудно извлечь. Что еще мы должны знать о титане, помимо описанных выше свойств титана и базовых знаний о титане? В этой статье мы рассмотрим некоторые физические свойства титана .

Физические свойства титана

1. Титан имеет металлический блеск и пластичность. Титан имеет плотность 4,5 г / см3, температуру плавления 1660 ± 10 ° C, температуру кипения 3287 ° C, валентности +2, +3 и +4 и энергию ионизации 6,82 электронвольта.

2. Основными характеристиками титана являются небольшая плотность, высокая механическая прочность и простота обработки. Пластичность титана в основном зависит от чистоты, чем чище титан, тем пластичность выше.

3. Титан обладает хорошей коррозионной стойкостью и не подвержен влиянию атмосферы и морской воды. При комнатной температуре титан не подвергается коррозии менее чем 7% -ной соляной кислотой, менее 5% -ной серной кислотой, азотной кислотой, царской водкой или разбавленными щелочными растворами. На него могут действовать только фтористоводородная кислота, концентрированная соляная кислота, концентрированная серная кислота и т. Д.

Физические свойства титана

4. Титан — важный легирующий элемент в стали и сплавах.Плотность титана составляет 4,506-4,516 г / кубический сантиметр (20 ° C), что выше, чем у алюминия, и ниже, чем у железа, меди и никеля, , но его удельная прочность самая высокая у металла.

5. Титан имеет температуру плавления 1668 ± 4 ° C, скрытую теплоту плавления 3,7-5,0 ккал / г атом, температуру кипения 3260 ± 20 ° C, скрытую теплоту испарения 102,5-112,5 ккал / г атома, критическая температура 4350 ° C и критическое давление 1130 атм.

6. Титан имеет низкую теплопроводность и электропроводность, которая аналогична нержавеющей стали или немного ниже ее. Титан обладает сверхпроводимостью. Критическая температура чистого титана составляет 0,38-0,4 К.

7. При 25 ° C теплоемкость титана составляет 0,126 калорий / грамм-атом · градус, энтальпия тепла составляет 1149 калорий / грамм-атом, а энтропия — 7,33 калорий / грамм-атом · градус. Металлический титан — парамагнитное вещество с магнитной проницаемостью 1.00004.

8. Титан пластичен. Относительное удлинение высокочистого титана может достигать 50-60%, а степень усадки секции может достигать 70-80%, но прочность на усадку низкая (то есть прочность, возникающая при усадке).

9. Наличие примесей в титане сильно влияет на его механические свойства, особенно примеси внедрения (кислород, азот, углерод) могут значительно повысить прочность титана и значительно снизить его пластичность.Хорошие механические свойства титана как конструкционного материала достигаются за счет строгого контроля соответствующего содержания примесей и добавления легирующих элементов.

10. Титан не является ферромагнитным, и атомные подводные лодки, построенные из титана, не должны беспокоиться об атаках магнитных мин.

Заключение

Спасибо, что прочитали нашу статью, и мы надеемся, что она поможет вам лучше понять физические свойства титана .Если вы хотите узнать больше о титане и других тугоплавких металлах , вы можете посетить Advanced Refractory Metal (ARM) для получения дополнительной информации.

со штаб-квартирой в Лейк-Форест, Калифорния, США, ARM — один из ведущих производителей и поставщиков тугоплавких металлов во всем мире. Мы предоставляем нашим клиентам высококачественные тугоплавкие металлические изделия, такие как вольфрам , молибден, тантал, рений, титан, и цирконий по очень доступной цене.

Титан против алюминия | Центр обработки титана

Титан — прочный и легкий материал, который используется во многих областях. Однако из-за цены его по-прежнему часто сравнивают с алюминием, который также является очень прочным металлом, но предлагает более низкую цену. Однако существует множество факторов, которые могут повлиять на окончательный выбор приложения, и необходимо учитывать как стоимость, так и характеристики металла. Простое сравнение химических и механических свойств этих металлов покажет, чем они отличаются и что может быть лучше для данной задачи.

Титан

Титан — один из самых распространенных металлов, встречающихся в природе. Он легкий, прочный и устойчивый к коррозии, что делает его очень желанным материалом. К сожалению, его трудно извлекать и обрабатывать, что может сделать его более дорогим, чем другие металлы. Он обладает хорошей теплопроводностью, немагнитен и нетоксичен. Помимо этого, титан также имеет следующие характеристики:

  • Прочность на растяжение — от 3000 до 200000 фунтов на квадратный дюйм, в зависимости от сплава
  • Коэффициент линейного теплового расширения — 8.6 х 10-6 К-1 (это немного ниже стали, но вдвое меньше алюминия)
  • Точка плавления — 1668 C (или 3135 F, что на 400 градусов выше стали и на 2000 градусов выше алюминия)
  • Температура кипения — 3287 ° C
  • Плотность — 4,506 г · см − 3 (около 60% плотности железа)
  • Теплопроводность — 21,9 Вт м-1 K-1
  • На 45% легче стали и на 60% тяжелее алюминия

Благодаря своей прочности и нетоксичности, титан часто используется в медицинском оборудовании, например, в заменителях коленного сустава, кардиостимуляторах, черепных пластинах и даже в качестве корневого устройства для дентальных имплантатов.С другой стороны, его способность противостоять коррозии делает его ценным материалом в химической и морской промышленности. Однако, поскольку это очень плохой проводник электричества, его использование в качестве проводника ограничено.

Хотя титан тяжелее алюминия, разница в прочности означает, что для выполнения этой работы потребуется гораздо меньше титана. Другими словами, можно использовать меньшее количество титана для получения тех же результатов на меньшем пространстве.

Алюминий

Алюминий — это экономичный вариант, который предлагает хорошее соотношение веса и прочности при сравнительно невысокой цене.Это надежный, прочный металл с хорошей коррозионной стойкостью и высокой вязкостью разрушения. Он имеет тускло-серебристый вид, что является результатом тонкого слоя оксида алюминия, который образуется почти сразу после контакта с воздухом. Его больше, чем титана, но что действительно снижает цену, так это простота изготовления.

  • Предел прочности на разрыв — в чистом виде алюминий не обладает очень высокой прочностью на разрыв, поэтому обычно его легируют с другими металлами.
  • Коэффициент линейного теплового расширения — 23.1 х 10-6 К-1
  • Точка плавления — 660,4 ° C
  • Температура кипения — 2467 ° C
  • Плотность — 2,7 г / см -3 (примерно 1/3 стали или меди, поэтому он сравнительно легкий)
  • Теплопроводность — 235 Вт м-1 K-1

Алюминий обладает хорошей устойчивостью к большинству кислот, но менее устойчив к щелочам. У него действительно хорошая теплопроводность (в 3 раза лучше, чем у стали), поэтому его часто используют в кулинарии, а поскольку он нетоксичен, мы также используем его для изготовления посуды и других продуктов, которые мы используем для еды.Он также имеет хорошую электропроводность (примерно в 10 раз лучше, чем у титана), поэтому его регулярно используют в качестве проводника.

Точки плавления металлов | Металл Супермаркеты

Металлы известны своей способностью противостоять экстремальным условиям. Тяжелые нагрузки, непрерывная езда на велосипеде, сильные удары, едкая среда и даже высокие температуры. Печи, двигатели внутреннего сгорания, реактивные двигатели, форсунки зажигания, высокоскоростное оборудование и выхлопные системы постоянно подвергаются воздействию температур, которые могут вызвать плавление некоторых типов металлов.При выборе металла для высокотемпературного применения необходимо оценить несколько различных температурных точек, и одна из наиболее важных температур, которую необходимо знать, — это температура плавления металла.

Что такое температура плавления металлов?

Температура плавления металла, более известная с научной точки зрения как точка плавления, — это температура, при которой металл начинает превращаться из твердой фазы в жидкую фазу. При температуре плавления твердая фаза и жидкая фаза металла находятся в равновесии.Как только эта температура будет достигнута, к металлу можно будет непрерывно подводить тепло, однако это не приведет к повышению общей температуры. Когда металл полностью перейдет в жидкую фазу, дополнительное тепло снова продолжит повышать температуру металла.

Почему важна температура плавления металла?

Есть много важных температур, которых достигает металл, когда он нагревается либо в процессе обработки металла, либо в результате нанесения, но температура плавления металла является одной из самых важных.

Одна из причин, по которой температура плавления так важна, заключается в отказе компонентов, который может произойти, когда металл достигнет своей температуры плавления. Разрушение металла может произойти до точки плавления, но когда металл достигает температуры плавления и становится жидкостью, он больше не будет служить своему назначению. Например, если компонент печи начинает плавиться, печь больше не будет работать, если компонент достаточно важен. Если топливная форсунка реактивного двигателя расплавится, отверстия засорятся, и двигатель может выйти из строя.Важно отметить, что другие типы разрушения металла, такие как трещины, вызванные ползучестью, могут произойти задолго до достижения температуры плавления, и необходимо заранее изучить влияние различных температур, которым будет подвергаться металл.

Другая причина того, почему температура плавления металла так важна, заключается в том, что металлы наиболее пластичны, когда они находятся в жидком состоянии. Металлы нагреваются до температуры плавления для многих различных производственных процессов. Плавка, сварка плавлением и литье требуют, чтобы металлы были жидкими.При выполнении производственного процесса, в котором металл будет плавиться, важно знать температуру, при которой это произойдет, чтобы можно было выбрать подходящие материалы для используемого оборудования. Например, сварочная горелка должна выдерживать внешнее тепло от электрической дуги и расплавленного металла. Оборудование для литья, такое как штампы, должно иметь более высокую температуру плавления, чем отливаемый металл.

Температуры плавления обычных металлов

Это температуры плавления обычных металлов:

  • Алюминий: 660 ° C (1220 ° F)
  • Латунь: 930 ° C (1710 ° F)
  • Алюминиевая бронза *: 1027-1038 ° C (1881-1900 ° F)
  • Хром: 1860 ° C (3380 ° F)
  • Медь: 1084 ° C (1983 ° F)
  • Золото: 1063 ° C (1945 ° F)
  • Инконель *: 1390-1425 ° C (2540-2600 ° F)
  • Чугун: 1204 ° C (2200 ° F)
  • Свинец: 328 ° C (622 ° F)
  • Молибден: 2620 ° C (4748 ° F)
  • Никель: 1453 ° C (2647 ° F)
  • Платина: 1770 ° C (3218 ° F)
  • Серебро: 961 ° C (1762 ° F)
  • Углеродистая сталь *: 1425-1540 ° C (2597-2800 ° F)
  • Нержавеющая сталь *: 1375-1530 ° C (2500-2785 ° F)
  • Титан: 1670 ° C (3038 ° F)
  • Вольфрам: 3400 ° C (6152 ° F)
  • Цинк: 420 ° C (787 ° F)

* Сплавы содержат более одного элемента, поэтому их температура плавления — это диапазон, который зависит от состава сплава.

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 90 магазинами в США, Канаде и Великобритании. Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины.Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 90+ офисов в Северной Америке сегодня.

Титан — точка плавления — точка кипения

Титан — точка плавления и точка кипения

Точка плавления титана составляет 1668 ° C .

Температура кипения титана 3287 ° C .

Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.

Точка кипения — насыщение

В термодинамике термин насыщение определяет состояние, при котором смесь пара и жидкости может существовать вместе при заданных температуре и давлении.Температура, при которой начинает происходить испарение (кипение) для данного давления, называется температурой насыщения или точкой кипения . Давление, при котором начинается испарение (кипение) для данной температуры, называется давлением насыщения. Если рассматривать температуру обратного перехода от пара к жидкости, ее называют точкой конденсации.

Точка плавления — насыщение

В термодинамике точка плавления определяет состояние, при котором твердое вещество и жидкость могут находиться в равновесии.Добавление тепла превратит твердое вещество в жидкость без изменения температуры. Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда рассматривается как температура обратного перехода от жидкости к твердому телу, она упоминается как точка замерзания или точка кристаллизации.

Титан — Свойства

905 902 905 902 905 902 905 902 905 902 905 902 905 902 905 Фаза на STP Сродство электрона [кДж / моль]
Элемент Титан
Атомный номер 22
Символ Элемент Твердое тело
Атомная масса [а.е.м.] 47.867
Плотность при STP [г / см3] 4,507
Электронная конфигурация [Ar] 3d2 4s2
Возможные состояния окисления +2,3,4 +2,3,4 7,6
Электроотрицательность [шкала Полинга] 1,54
Энергия первой ионизации [эВ] 6,8282
Discovery Год открытия Грегор, Уильям
Тепловые свойства
Точка плавления [шкала Цельсия] 1668
Точка кипения [шкала Цельсия] 3287
Теплопроводность [теплопроводность] 21.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2011-2019. ООО «Талицкий кирпич»