Таблица теплопроводности и других качеств материалов для утепления
Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.
Что такое теплопроводность?
Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
| Теплопроводность, Вт/(м*С) | Плотность, кг/м3 | Паропроницаемость, мг/ (м*ч*Па) | «+» | «-» | Горюч. |
Пенополиуретан | 0,023 | 32 | 0,0-0,05 | 2.Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция | 1.недешевый 2. Не устойчив к УФ-излучению | Самозатухающий |
0,029 | 40 | |||||
0,035 | 60 | |||||
0,041 | 80 | |||||
Пенополистирол (пенопласт) | 0,038 | 40 | 0,013-0,05 | 1.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем | 1. Хрупкий; 2. Не «дышит» и образует конденсат | Г3 и Г4. Сопротивление возгоранию и самозатухание |
0,041 | 100 | |||||
0,05 | 150 | |||||
Экструдированный пенополистирол | 0,031 | 33 | 0,013 | 1.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже. | 1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат. | Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание |
Минеральная (базальтовая) вата | 0,048 | 50 | 0,49-0,6 | 1.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется | 1.Недешевый | Огнеупорный |
0,056 | 100 | |||||
0,07 | 200 | |||||
Стекловолокно (стекловата) | 0,041-0,044 | 155-200 | 0,5 | 1.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ | 1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат. | Не горит |
Пенопласт ПВХ | 0,052 | 125 | 0,023 | 1.Жесткий и удобный в монтаже | 1.Недолговечен; 2.Плохая паропроницаемость и образование конденсата | Г3 и Г4. Сопротивление возгоранию и самозатухание |
Древесные опилки | 0,07-0,18 | 230 | — | 1.Дешевизна; 2.Экологичность | 1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажности | Пожароопасен |
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
- Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
- Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
- Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
- Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
- Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
- Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
- Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
- Долговечность определяет срок службы материала;
- Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
- Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Кто на свете всех теплей?
Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.
Пенополиуретан или экструдированный пенополистирол
Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.
А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.
Минеральная вата или пенопласт
Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.Другие утеплители
Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.
Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.
Выбирая утеплитель
Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».
Оцените статью: Поделитесь с друзьями!ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
500 | 0.116…0.14 | — | |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 0.055 | 920 | |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 750 | |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 0.12 | — | |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.045 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 | 0.04 | — |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996– 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 150…600 | 0.052…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная техническая | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.073…0.096 | — |
Пробковое покрытие для полов | 540 | 0.078 | — |
Ракушечник | 1000…1800 | 0.27…0.63 | 835 |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
Преимущества и недостатки стекловаты и минваты
Многие люди порой задаются вопросом, в чем разница между минватой и стекловатой? Бытует ошибочное мнение, что это абсолютно одинаковые материалы. На самом деле отличий у них довольного много, которые и будут рассмотрены далее.
Общая информация
Минвата (или базальтовая вата) бывает двух видов: каменная и шлаковая. Первая разновидность получается в результате переработки вулканических или горных пород. Она представляется наиболее совершенным и, как следствие, более дорогим в своем классе материалом. Шлаковая вата производится из шлаков — отходов черных и цветных металлов. В плане технических характеристик эти разновидности практически не отличаются.
Стекловата производится из стекольных волокон толщиной 3-15 мм и длиной 15-50 мм. В настоящий момент она считается устаревшей технологией, поэтому применяют её все реже. Главный её недостаток заключается в исключительной опасности при работе.
Стекловата
Рассматриваем различия по ключевым характеристикам
Далее детально проанализируем отличия по основным характеристикам. В первую очередь рассмотрим теплопроводность (способность материала пропускать через себя тепло). Чем этот показатель ниже, тем эффективнее утеплитель. Это ключевая характеристика для данной категории. Теплопроводность стекловаты колеблется в пределах 0,045-0,055 Вт/м*К. У минваты этот показатель лучше: 0,041,- 0,44 Вт/м*К. Показатель у базальтовой ваты ниже, значит она эффективнее своего собрата. Тем не менее, разница между ними совсем небольшая.
Теперь рассмотрим другие, не менее значимые показатели:
- Звукоизоляция. В данном компоненте стекловате нет равных — из всех теплоизоляционных материалов она самая эффективная. При её использовании отпадает необходимость прокладывать шумопоглощающую подложку.
- Безопасность. Внутри стекловаты попадаются мелкие кусочки стекла, из-за которых можно порезаться. Более того, при её резке в воздухе начинают парить мельчайшие волокна, которые, попадая в легкие, могут нанести серьезный вред. Работа с базальтовой ватой полностью безопасна, поэтому в данном компоненте она выигрывает.
- Влагостойкость. Стекловата впитывает влагу, вследствие чего начинают значительно ухудшаться её технические характеристики. Поэтому её не рекомендуется использовать при утеплении таких помещений как ванная, кухня и туалет. Минвата же отлично противостоит влаге.
- Огнестойкость. Оба эти материала причисляются к классу горючих.
Важно! Минеральная вата может тлеть в течение нескольких часов, а стекловата подвергается активному горению.
- Прочность. Минеральная вата мягкая и не слишком упруга. Её «собрат», который изготавливается на основе стекольных волокон наоборот — весьма прочный и устойчив к физическим нагрузкам.
- Температуроскойкость. Максимальная рабочая температура стекловаты +450 градусов, а её собрата +700. Однако стоит заметить, что при использовании в нормальных условиях, эти показатели не имеют никакого значения.
В остальных компонентах эти материалы имеют практически равные показатели, и различия между ними минимальны. Поэтому о них мы не упоминали.
Минеральная вата
Подведем итоги сравнения
Констатируя описанную выше информацию, можно выделить плюсы и минусы каждого из представленных материалов. Достоинства стекловаты заключаются в следующем:
- Она дешевле.
- У неё лучшие в своем классе звукоизоляционные качества.
- Обладает более высокой упругостью и прочностью.
На этом её плюсы заканчиваются и начинаются минусы:
- Работать с ней опасно.
- Выше теплопроводность.
- Впитывает влагу.
- Подвергается усадке.
Также выделим положительные качества минваты:
- Температурная стойкость.
- Повышенные теплоизоляционные качества.
- Работа с ней безопасна.
- Не подвергается усадке.
Единственным её недостатком можно назвать относительно высокую цену. Поэтому в случае достаточности бюджета, лучше использовать именно базальтовую разновидность.
Материал |
Характеристики материалов в сухом состоянии |
Расчетные коэффициенты (при условиях эксплуатации по СНиП 23-02) |
||||||||
плот- |
удельная тепло- |
коэффи- |
массового отношения влаги в материале, % |
теплопро- |
тепло- |
паропро- |
||||
А |
Б |
А |
Б |
А |
Б |
А, Б |
||||
Маты минераловатные прошивные (ГОСТ 21880) | 125 | 0.84 | 0.044 | 2 | 5 | 0.064 | 0.07 | 0.73 | 0.82 | 0.3 |
Маты минераловатные прошивные (ГОСТ 21880) | 100 | 0.84 | 0.044 | 2 | 5 | 0.061 | 0.067 | 0.64 | 0.72 | 0.49 |
Маты минераловатные прошивные (ГОСТ 21880) | 75 | 0.84 | 0.046 | 2 | 5 | 0.058 | 0.064 | 0.54 | 0.61 | 0.49 |
Маты минераловатные на синтетическом связующем (ГОСТ 9573) | 225 | 0.84 | 0.054 | 2 | 5 | 0.072 | 0.082 | 1.04 | 1.19 | 0.49 |
Маты минераловатные на синтетическом связующем (ГОСТ 9573) | 175 | 0.84 | 0.052 | 2 | 5 | 0.066 | 0.076 | 0.88 | 1.01 | 0.49 |
Маты минераловатные на синтетическом связующем (ГОСТ 9573) | 125 | 0.84 | 0.049 | 2 | 5 | 0.064 | 0.07 | 0.73 | 0.82 | 0.49 |
Маты минераловатные на синтетическом связующем (ГОСТ 9573) | 75 | 0.84 | 0.047 | 2 | 5 | 0.058 | 0.064 | 0.54 | 0.61 | 0.53 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 250 | 0.84 | 0.058 | 2 | 5 | 0.082 | 0.085 | 1.17 | 1.28 | 0.41 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 225 | 0.84 | 0.058 | 2 | 5 | 0.079 | 0.084 | 1.09 | 1.2 | 0.41 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 200 | 0.84 | 0.056 | 2 | 5 | 0.076 | 0.08 | 1.01 | 1.11 | 0.49 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 150 | 0.84 | 0.05 | 2 | 5 | 0.068 | 0.073 | 0.83 | 0.92 | 0.49 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 125 | 0.84 | 0.049 | 2 | 5 | 0.064 | 0.069 | 0.73 | 0.81 | 0.49 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 100 | 0.84 | 0.044 | 2 | 5 | 0.06 | 0.065 | 0.64 | 0.71 | 0.56 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573, ГОСТ 10140, ГОСТ 22950) | 75 | 0.84 | 0.046 | 2 | 5 | 0.056 | 0.063 | 0.53 | 0.6 | 0.6 |
Плиты минераловатные ЗАО «Минеральная вата / Роквул « | 180 | 0.84 | 0.038 | 2 | 5 | 0.045 | 0.048 | 0.74 | 0.81 | 0.3 |
Плиты минераловатные ЗАО «Минеральная вата / Роквул» | 158 | 0.84 | 0.037 | 2 | 5 | 0.043 | 0.046 | 0.68 | 0.75 | 0.31 |
Плиты минераловатные ЗАО «Минеральная вата / Роквул» | 103 | 0.84 | 0.036 | 2 | 5 | 0.042 | 0.045 | 0.53 | 0.59 | 0.32 |
Плиты минераловатные ЗАО «Минеральная вата / Роквул» | 50 | 0.84 | 0.035 | 2 | 5 | 0.041 | 0.044 | 0.37 | 0.41 | 0.35 |
Плиты минераловатные ЗАО «Минеральная вата / Роквул» | 38 | 0.84 | 0.036 | 2 | 5 | 0.042 | 0.045 | 0.31 | 0.35 | 0.37 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем | 200 | 0.84 | 0.064 | 1 | 2 | 0.07 | 0.076 | 0.94 | 1.01 | 0.45 |
Плиты полужесткие минераловатные на крахмальном связующем | 200 | 0.84 | 0.07 | 2 | 5 | 0.076 | 0.08 | 1.01 | 1.11 | 0.38 |
Плиты полужесткие минераловатные на крахмальном связующем | 125 | 0.84 | 0.056 | 2 | 5 | 0.06 | 0.064 | 0.7 | 0.78 | 0.38 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499) | 45 | 0.84 | 0.047 | 2 | 5 | 0.06 | 0.064 | 0.44 | 0.5 | 0.6 |
Маты и полосы из стеклянного волокна прошивные | 150 | 0.84 | 0.061 | 2 | 5 | 0.064 | 0.07 | 0.8 | 0.9 | 0.53 |
Маты из стеклянного штапельного волокна «URSA» | 25 | 0.84 | 0.04 | 2 | 5 | 0.043 | 0.05 | 0.27 | 0.31 | 0.61 |
Маты из стеклянного штапельного волокна «URSA» | 17 | 0.84 | 0.044 | 2 | 5 | 0.046 | 0.053 | 0.23 | 0.26 | 0.66 |
Маты из стеклянного штапельного волокна «URSA» | 15 | 0.84 | 0.046 | 2 | 5 | 0.048 | 0.053 | 0.22 | 0.25 | 0.68 |
Маты из стеклянного штапельного волокна «URSA» | 11 | 0.84 | 0.048 | 2 | 5 | 0.05 | 0.055 | 0.19 | 0.22 | 0.7 |
Плиты из стеклянного штапельного волокна «URSA» | 85 | 0.84 | 0.044 | 2 | 5 | 0.046 | 0.05 | 0.51 | 0.57 | 0.5 |
Плиты из стеклянного штапельного волокна «URSA» | 75 | 0.84 | 0.04 | 2 | 5 | 0.042 | 0.047 | 0.46 | 0.52 | 0.5 |
Плиты из стеклянного штапельного волокна «URSA» | 60 | 0.84 | 0.038 | 2 | 5 | 0.04 | 0.045 | 0.4 | 0.45 | 0.51 |
Плиты из стеклянного штапельного волокна «URSA» | 45 | 0.84 | 0.039 | 2 | 5 | 0.041 | 0.045 | 0.35 | 0.39 | 0.51 |
Плиты из стеклянного штапельного волокна «URSA» | 35 | 0.84 | 0.039 | 2 | 5 | 0.041 | 0.046 | 0.31 | 0.35 | 0.52 |
Плиты из стеклянного штапельного волокна «URSA» | 30 | 0.84 | 0.04 | 2 | 5 | 0.042 | 0.046 | 0.29 | 0.32 | 0.52 |
Плиты из стеклянного штапельного волокна «URSA» | 20 | 0.84 | 0.04 | 2 | 5 | 0.043 | 0.048 | 0.24 | 0.27 | 0.53 |
Плиты из стеклянного штапельного волокна «URSA» | 17 | 0.84 | 0.044 | 2 | 5 | 0.047 | 0.053 | 0.23 | 0.26 | 0.54 |
Плиты из стеклянного штапельного волокна «URSA» | 15 | 0.84 | 0.046 | 2 | 5 | 0.049 | 0.055 | 0.22 | 0.25 | 0.55 |
Пеностекло или газостекло | 400 | 0.84 | 0.11 | 1 | 2 | 0.12 | 0.14 | 1.76 | 1.94 | 0.02 |
Пеностекло или газостекло | 300 | 0.84 | 0.09 | 1 | 2 | 0.11 | 0.12 | 1.46 | 1.56 | 0.02 |
Пеностекло или газостекло | 200 | 0.84 | 0.07 | 1 | 2 | 0.08 | 0.09 | 1.01 | 1.1 | 0.03 |
Чем каменная вата лучше стекловаты
Краткое содержание:
Если бы Вам сказали, что изобрели утеплитель, который можно использовать для любых конструкций и в любом климате – Вы бы поверили? Ответ очевиден: универсальных утеплителей нет! Даже начинающий строитель понимает, что самые раскрученные марки тоже имеют свои минусы, о которых производители просто молчат. Сегодня мы расскажем Вам о популярном продукте, который совершил настоящую революцию в сфере строительства – каменной вате. Узнайте всю правду: чем отличается этот утеплитель от стекловаты, и как Вы можете сэкономить, потратив на него в 3 раза больше.
Главные Отличия Стекловаты и Каменной ваты
Итак, дом готов к утеплению, а Вы до сих пор не определились с выбором теплоизоляции. В голове сидит главный вопрос: купить новомодную каменную вату, которую признали 70% потребителей во всё мире или взять по старинке стекловату? Давайте определимся с главными факторами, которые отличают эти теплоизоляционные материалы друг от друга:
- Сырье. Стекловата выдувается из синтетического материала – легкоплавкой шихты (отходы стекольного производства и бой стекла). Каменная вата производится и горных пород на основе базальта – природного экологически чистого сырья, поэтому с успехом используется для утепления жилых помещений.
вот так выглядит стекловата после прямого воздействия огня
Негорючесть. Несмотря на то, что оба материала признаны негорючими, каменная вата отличается большей устойчивостью к высоким температурам. Базальтовая плита способна выдержать t около 750°С и не утратить геометрических параметров, в то время стекловата при повышении температуры до 400 градусов спекается в леденец.
- Подверженость к усадке. Главным минусом стекловаты является способность впитывать влагу, которая приводит к хрупкости волокон и рассыпанию их на мелкие кристаллы при малейшей нагрузке, в результате чего утеплитель теряет форму. Базальтовая вата устойчива к влаге (показатель гигроскопичности 0,5%), поэтому на протяжении всего срока службы не подвержена усадке.
- Химическая устойчивость. Каменная вата не боится щелочей, кислот и других агрессивных сред, в то время как стекловата вступает с ними в химическую реакцию и разрушается.
Важный факт! По результатам проведенной экспертизы трехслойных железобетонных панелей, в которых в качестве теплоизоляционного слоя использовалась стекловата, при вскрытии через 5-15 лет обнаружили одну труху.
монтаж стекловаты требует использования спецодежды и средств защиты
Удобство в монтаже. Если работа с базальтовой ватой не требует использования респиратора и перчаток, то монтаж стекловаты требует полной экипировки, иначе волокна стекловаты въедаются в кожу, а стеклянная пыль попадает в дыхательные пути, вызывая серьезные проблемы со здоровьем.
Факты говорят сами за себя, но если Вы до сих пор сомневаетесь, идём дальше. Рассмотрим самый животрепещущий вопрос потребителя. Вы наверняка догадались – о чём речь? Совершенно верно. Поговорим о том, как максимально эффективно использовать содержимое Вашего кошелька.
Видео: сравнение стекловаты и каменной ваты
Таблица характеристик теплопроводности базальтовой и минеральной ваты
Наименование | Стекловата | Базальтовая вата |
---|---|---|
Основа | Стекло | Базальт |
Тип волокон | Мягкие и длинные | Хрупкие и короткие |
Гидрофобность | Низкая | Высокая |
Вред | Акрил | Фенол |
Коэффициент теплопроводности (средняя) | 0,039 Вт/м*К | 0,040 Вт/м*К |
Плотность | Низкая | Высокая |
Температурный диапазон | -60 до 500 | -190 до 1000 |
Что Делать, Если Цены Кусаются?
Ursa, Isover и другие популярные бренды стекловаты предлагают свои продукты по ценам, которые втрое дешевле своих собратьев из базальта.
Статистика строительного рынка гласит: при толщине утеплителя в 50 мм 1 кв.м. “стекла” стоит 1 $ , а базальта” – 3$.
Зачем платить больше? – спросите Вы, если внешне материалы особо неотличимы, а их теплоизоляционные свойства почти равны. Дать однозначный ответ невозможно! Всё зависит от того, какие цели Вы преследуете, и на какой срок Вам требуется утепление.
- Если Вы планируете утеплить чердак дачного дома, крыша которого не проживет дольше утеплителя, можете купить и традиционную стекловату. В данной ситуации выбор будет вполне оправданным.
- Если же в планах теплоизоляция квартиры или дома для постоянного проживания, то знайте, что кусаются не цены, а стекловата! А ещё выделяет токсины при нагреве, сползает с вертикальных конструкций и может рассыпаться уже через несколько лет. Вряд ли Вас порадуют такие перспективы.
Помните, что утепление – это не то, на чём можно сэкономить, иначе стены Вашего дома покроются трещинами, а крыша может в прямом смысле «поехать».
Выбирайте каменную вату марки Rockwool – вечный утеплитель, который более полувека будет защищать Ваш дом от непогоды, не теряя своих эксплуатационных свойств и оберегая здоровье Ваших близких. Вложенные средства окупятся отсутствием ремонтов, двойной экономией средств на отопление и неповторимым комфортом! Экономьте правильно!
По всем вопросам, связанным с подбором материала и обсуждением строительных услуг звоните нам по телефону +7 (495) 725-43-71! Или заполняйте форму заказа прямо сейчас! Мы выполним теплоизоляцию любого объекта с гарантией до 5 лет!
Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица
В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.
Содержание:
Зачем нужна теплоизоляция?
Актуальность теплоизоляции заключается в следующем:
- Сохранение тепла в зимний период и прохлады в летний период.
Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.
- Увеличение долговечности конструкций здания.
В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены.
Такое утепление позволяет увеличить срок службы здания во много раз.- Шумоизоляция.
Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).
- Увеличение полезной площади зданий.
Как правильно выбрать утеплитель?
При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.
Основные требования, предъявляемые к теплоизоляционным материалам:
- Теплопроводность.
Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.
Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.
Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.
Читайте также: Материалы для утепления балкона или лоджии: основные характеристики
Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.
А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.
А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.
Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.
В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!
Таблица теплопроводности материалов
Материал | Теплопроводность материалов, Вт/м*⸰С | Плотность, кг/м³ |
Пенополиуретан | 0,020 | 30 |
0,029 | 40 | |
0,035 | 60 | |
0,041 | 80 | |
Пенополистирол | 0,037 | 10-11 |
0,035 | 15-16 | |
0,037 | 16-17 | |
0,033 | 25-27 | |
0,041 | 35-37 | |
Пенополистирол (экструдированный) | 0,028-0,034 | 28-45 |
Базальтовая вата | 0,039 | 30-35 |
0,036 | 34-38 | |
0,035 | 38-45 | |
0,035 | 40-50 | |
0,036 | 80-90 | |
0,038 | 145 | |
0,038 | 120-190 | |
Эковата | 0,032 | 35 |
0,038 | 50 | |
0,04 | 65 | |
0,041 | 70 | |
Изолон | 0,031 | 33 |
0,033 | 50 | |
0,036 | 66 | |
0,039 | 100 | |
Пенофол | 0,037-0,051 | 45 |
0,038-0,052 | 54 | |
0,038-0,052 | 74 |
- Экологичность.
Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.
- Пожарная безопасность.
Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.
- Паро- и водонепроницаемость.
Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.
- Долговечность.
Читайте также: Как утеплить стены минватой: общие правила
В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.
Достоинства и недостатки утеплителей
- Пенополиуретан – на сегодняшний день самый эффективный утеплитель.
Виды ППУ
Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.
Недостатки: дороговизна материала, неустойчивость к УФ-излучению.
- Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.
Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.
Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.
- Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.
Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.
Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.
- Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.
Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.
Недостатки: более высокая стоимость, по сравнению с аналогами.
- Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.
Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.
Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.
- Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.
Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.
Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.
- Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.
Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.
Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.
Заключение
Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.
Содержание статьи:
Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.
Понятие теплопроводности
Утеплители имеют разный коэффициент теплопроводности – это главный показатель материала
Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т.е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.
В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.
Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.
Факторы влияния на теплопроводность
Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.
Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.
Материал | Показатель плотности, кг/м3 |
Минвата | 50-200 |
Экструдированный пенополистирол | 33-150 |
Пенополиуретан | 30-80 |
Мастика из полиуретана | 1400 |
Рубероид | 600 |
Полиэтилен | 1500 |
Чем выше плотность, тем меньше уровень пароизоляции.
Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.
Материал | Толщина, мм |
Пеноплекс | 20 |
Минвата | 38 |
Ячеистый бетон | 270 |
Кладка из кирпича | 370 |
При подборе толщины стоит учитывать климат местности, материал постройки.
Характеристики разных материалов
Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.
Пенопласт
Пенопласт и пенополистирол отличаются способом производства, ценой и теплопроводностью
Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.
При горении пенопласта выделяются токсичные вещества.
Экструдированный пенополистирол
Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.
Минеральная вата
Чем плотнее плиты минеральной базальтовой ваты, тем хуже они проводят тепло
Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.
Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.
Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.
Базальтовая вата
Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:
- не подвергается возгоранию;
- отличается хорошим показателем тепло- и звукоизоляции;
- отсутствие слеживания и уплотнения в процессе эксплуатации;
- экологически чистый строительный материал.
Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.
Стекловата
Стекловата имеет коэффициент теплопроводности выше, чем каменная вата, материал гигроскопичен
Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:
- Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
- Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
- Непродолжительная эксплуатация – через 10 лет происходит усадка.
- Невозможность применения для утепления влажных комнат.
При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.
Вспененный полиэтилен
Вспененный фольгированный полиэтилен имеет пропускает тепло хуже, чем обычный
Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:
- маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
- возможность сохранения до 97 % полезного тепла;
- стойкость к воздействию влаги;
- минимальная теплопроводность за счет пор;
- экологическая чистота;
- отражающий эффект, за счет которого аккумулируется тепловая энергия.
Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.
Напыляемая теплоизоляция
Пенополиуретан имеет самую низкую теплопроводность
Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:
- ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
- Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
- Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
- Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.
Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.
Таблица коэффициентов теплопроводности разных материалов
На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.
Материал | Теплопроводность, Вт/м*К | Толщина, мм | Плотность, кг/м³ | Температура укладки, °C | Паропроницаемость, мг/м²*ч*Па |
Пенополиуретан | 0,025 | 30 | 40-60 | От -100 до +150 | 0,04-0,05 |
Экструдированный пенополистирол | 0,03 | 36 | 40-50 | От -50 до +75 | 0,015 |
Пенопласт | 0,05 | 60 | 40-125 | От -50 до +75 | 0,23 |
Минвата (плиты) | 0,047 | 56 | 35-150 | От -60 до +180 | 0,53 |
Стекловолокно (плиты) | 0,056 | 67 | 15-100 | От +60 до +480 | 0,053 |
Базальтовая вата (плиты) | 0,037 | 80 | 30-190 | От -190 до +700 | 0,3 |
Железобетон | 2,04 | 2500 | 0,03 | ||
Пустотелый кирпич | 0,058 | 50 | 1400 | 0,16 | |
Деревянные брусья с поперечным срезом | 0,18 | 15 | 40-50 | 0,06 |
Для параметров толщины применялся усредненный показатель.
Иные критерии подбора утеплителей
Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.
Объемный вес
Вес и плотность минваты влияет на качество утепления
Данная характеристика связана с теплопроводностью и зависит от типа материала:
- Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
- Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
- Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
- Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
- Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.
Чем меньше объемный вес, тем меньше затрачивается материала.
Способность держать форму
Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму
Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.
Формостабильность стройматериалов зависит от типа утеплителя:
- Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
- Пенные виды держат форму на уровне жесткой каменной ваты.
Способность изделия держать форму также определяется по характеристикам упругости.
Паропроницаемость
Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.
По степени паропроницаемости выделяют два типа утеплителей:
- Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
- Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.
При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.
Горючесть
Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:
- НГ – негорючие: каменная и базальтовая вата.
- Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
- В – воспламеняемые: плиты из ДСП, рубероид.
- Д – дымообразующие (ПВХ).
- Т – токсичные (минимальный уровень – у бумаги).
Оптимальный вариант для частного строительства – самозатухающие материалы.
Звукоизоляция
Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.
У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.
Нормальный показатель звукоизоляции – плотность от 50 кг/м3.
Практическое применение коэффициента теплопроводности
Коэффициент теплопроводности необходим для вычисления объема утеплителя в климатическом поясе
После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.
Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.
Достаточная толщина теплоизоляционного слоя – 50 см.
Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.
Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.
Понятие теплопроводности
Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.
Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
- Плотность материала. При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
- Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
- Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.
Конструкционные материалы и их показатели
Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:
- Бетон. Его теплопроводность находится в пределах 1,29-1,52Вт/м*К. Точное значение зависит от консистенции раствора. На этот показатель также влияет плотность исходного материала, которая составляет 500-2500 кг/м3. Используют данный материал в виде раствора для фундаментов, в виде блоков – для возведения стен и фундамента.
- Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м3.
- Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м3 и 0,2-0,23Вт/м*К соответственно.
Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:
- саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
- керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
- силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
- Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
- Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
- Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Показатели теплоизоляционных материалов
Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:
- пенопласт, который обладает плотностью 15-50кг/м3, при теплопроводности – 0,031-0,033Вт/м*К;
- пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
- стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
- каменная вата с показателем 0,035-0,042Вт/м*К.
Таблица показателей
Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:
Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.
Правильно подобранный изоляционный материал снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.
Выбирая утеплитель, мы обращаем внимание на 2 главные характеристики – это теплопроводность и плотность. У большинства из нас на подсознательном уровне формируется мнение, что чем плотнее материал, тем он надежней и теплее. На самом деле это не так, теплопроводность утеплителя зависит от плотности не пропорционально и для каждого материала есть своя «оптимальная зона». Для наглядного примера возьмем продукты одного из самых успешных производителей минеральной ваты РОКВУЛ.
График зависимости теплопроводности от плотности утеплителя ROCKWOOL
Как мы видим, минимальная теплопроводность базальтовой ваты компании ROCKWOOL, так называемая «оптимальная зона», достигается для утеплителя плотностью в районе 50 — 100 кг/м3. Почему зависимость носит такой характер? Давайте разберемся более подробно в этом вопросе.
В любом утеплителе в качестве главного теплоизолятора служит воздух. Изолированный от окружающей среды, он обладает очень низкой теплопроводностью λ= 0,022 Вт/(м·K). Выходит, что чем больше воздуха в утеплителе, тем меньше тепла будет уходить из дома, соответственно и плотность будет намного меньше. В реальности, этот воздух необходимо еще качественно изолировать, чтобы он был максимально неподвижен.
Также важно, чтобы утеплитель мог нести какие-то нагрузки, как минимум не слеживаться со временем, чтобы сохранять первоначальный объём. Именно поэтому у каждого вида теплоизоляции есть минимальная и максимальная плотность, где учитываются нагрузки и оптимальная теплопроводность.
Для каждого вида утепления есть свои требования, выбирать более плотный материал стоит в том случае, если на него предвидятся нагрузки – это утепление плоских крыш, или утепление фасада под штукатурку, тут уже в первую очередь необходимо отталкиваться от прочностных характеристик.
К примеру, для утепления пола на бетонной стяжке, производитель ROCKWWOL рекомендует линейку STEPROCK HD, плотностью 140 кг/м3 и теплопроводностью λ=0,039 Вт/(м·K). Если попробовать сделать плиты легче, то вата может не выдержать такую нагрузку, а если сделать тяжелее, то теплопроводность незначительно ухудшиться, и цена утеплителя увеличиться.
Важно! помните, покупая утеплитель, Вы покупаете материал для сохранения тепла, самая главная характеристика в утеплителе – теплопроводность. Перед покупкой ознакомьтесь с сертификатами испытаний и обратите внимание – коэффициент теплопроводности должен быть в условиях эксплуатации, ведь в реальной жизни небольшое количество влаги всегда будет присутствовать.
Вывод: задача любого производителя найти баланс между частью воздуха и качеством изоляции этого воздуха. Это касается и стекловаты, и пенопласта, и пенополиуретана, только у каждого из этих утеплителей будут свои значения плотности для оптимальной теплопроводности.
Используемые источники:
- https://balkon4life.ru/uteplenie/materialy/sravnenie-uteplitelej-tablica-teploprovodnosti/.html
- https://strojdvor.ru/otoplenie/sravnenie-teploprovodnosti-razlichnyx-uteplitelej/
- https://fb.ru/article/305875/koeffitsient-teploprovodnosti-materiala-teploprovodnost-stroitelnyih-materialov-tablitsa
- https://xn--e1aecbmcsce2a6c6fc.com.ua/blog-post/зависит-ли-теплопроводность-утеплит/
Достоинства и недостатки базальтовой ваты и стекловаты
Своевременное утепление дома позволит вам на протяжении всего года поддерживать в доме комфортный микроклимат с оптимальными затратами средств на оплату энергоносителей. Эффективность утепления дома во многом определяется правильным выбором утеплителя и качеством его монтажа.
Самые востребованные на сегодняшний день утеплители — это минеральная вата и стекловолокно. На основе этого сырья производится обширный перечень тепло- и звукоизоляционных материалов самого разного назначения. Что лучше: базальтовая вата или стекловата? Для правильного выбора необходимо ознакомиться с особенностями каждого утеплителя в отдельности.
Достоинства и недостатки базальтовой теплоизоляции
- Базальтовая или каменная вата отличается низкой теплопроводностью, стойкостью к неблагоприятным воздействиям, стабильными характеристиками, доступной стоимостью и продолжительным эксплуатационным ресурсом.
- Такие утеплители практически входят в группу безусадочных, поэтому могут использоваться для отделки вертикальных и наклонных поверхностей в многослойных стенах и перекрытиях.
- Новые разновидности минераловатных утеплителей производятся с применением бесфенольных связующих, поэтому не имеют ограничений по внутреннему утеплению. Следует отметить уникально высокую термостойкость базальтовой ваты, утеплитель может на протяжении длительного времени противостоять тысячеградусному нагреву, защищая стеновые строительные материалы от термического разрушения.
- Базальто-волоконные утеплители производятся в широком диапазоне плотностей, разработанная производителями классификация способствует выбору материала в полной мере соответствующего проектным требованиям.
Недостатков у минеральной ваты немного. В первую очередь — это вес, а так же, повышение теплопроводности при увлажнении. В первом случае проблема решается выбором утеплителя оптимальной плотности, во втором — применением гидрофобизированных материалов.
Внимание, это важно! Минераловатные утеплители не рекомендуется уплотнять более чем на 10% от объема.
Повышение плотности отрицательно скажется на изолирующих свойствах. При необходимости применяются материалы повышенной плотности, ориентированные на теплоизоляцию нагруженных конструкций.
Утеплители на стекловолоконной основе
На рынке стекловолоконной теплоизоляции высоким спросом пользуются тепло- и звукоизоляционные материалы, разработанные специалистами компании Урса.
Экологически безупречные утеплители нового поколения лишены многих недостатков характерных для стекловаты.
- Беспылевые производственные технологии исключают при монтаже засорение окружающей среды. Минимальная усадка определяет пригодность этой группы утеплителей для отделки вертикальных конструкций. Звукоизоляция урсой придает стенам и перекрытиям шумопоглощающие свойства, относительно небольшой вес позволяет использовать стекловолоконный утеплитель на конструкциях с недостаточным запасом прочности.
- По сравнению с базальтовой ватой, термостойкость стекловолоконной теплоизоляции в два раза ниже, верхний температурный предел составляет немногим более 400°С . Недостаток компенсируется более совершенными тепло- и звукоизолирующими свойствами материалов. На практике — это уменьшение объема теплоизоляции и снижение нагрузок на строительные конструкции.
Ведущие производители базальтовых и стекловолоконных утеплителей расширяют действующий ассортимент за счет модернизации проверенных временем моделей и разработки новых.
Мы поможем вам правильно выбрать и купить строительные материалы и команда настоящих профессионалов окажет строительные услуги в самые короткие сроки и по приемлемой стоимости!Стекловата — теплоизоляция
Пример — изоляция из стекловаты
Основной источник потерь тепла из дома — через стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,0 Вт / м · К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, особенно, от внешних и внутренних условий (ветер, влажность и т. Д.).
- Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
- Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте стекловолокно ватную изоляцию толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,023 Вт / м.К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.
Решение:
Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию как теплопроводности, так и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :
Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.
- голая стена
Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:
Тогда общий коэффициент теплопередачи равен:
U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 Вт / м 2 K
Тепловой поток можно рассчитать просто как:
q = 3,53 [Вт / м 2 K] x 30 [K] = 105.9 Вт / м 2
Суммарные потери тепла через эту стену будут:
q убыток = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт
- композитная стена с теплоизоляцией
Предполагая одномерную теплопередачу через плоскую композитную стенку, отсутствие теплового контактного сопротивления и без учета излучения, общий коэффициент теплопередачи можно рассчитать как:
Тогда общий коэффициент теплопередачи равен:
U = 1 / (1/10 + 0.15/1 + 0,1 / 0,023 + 1/30) = 0,216 Вт / м 2 K
Тепловой поток можно рассчитать просто как:
q = 0,216 [Вт / м 2 K] x 30 [K] = 6,48 Вт / м 2
Суммарные потери тепла через эту стену будут:
q убыток = q. A = 6,48 [Вт / м 2 ] x 30 [м 2 ] = 194 Вт
Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизолятора не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитных стен . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.
Теплопроводность стекловаты
Теплопередача:- Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриен С.Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам DOE, том 2 из 3, май 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
- В. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
- W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Clarendon Press; 1 издание, 1991 г., ISBN: 978-0198520467
- г.Р.Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерного реактора, 1988.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2. Январь 1993 г.
- Пол Рейсс, нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Зависимость теплопроводности от плотности стекловаты, микронейр 5,0 / 6 г, …
Эти последние изменения в контексте развития и повышения ценности материалов для создания новых композитных материалов. на основе слизи и волокон.Ces travaux ont pipe dans un premier temps à la synthèse de precurseurs d’isosorbide époxy et polyuréthanes, как альтернативные условные обозначения aux précurseurs toxiques. Pour cela nous avons offer une voie originale d’optimisation de la synthèse de diglycidyle éther d’isosorbide (DGEI) en utilisant un procédé ultrasonique. Частично, для сравнения методов преобразования эпоксидов в карбонатные циклы с включением CO₂nous, служащим базовым методом преобразования DGEI en cyclocarbonates d’isosorbide (CCI) в условиях douces de pression et de température.Dans une second partie, l’extraction de composés hydrosolubles de la graine de lin a permis d’identifier la structure complex du mucilage et les effets des paramètres dextraction sur les propriétés Physico-chimiques et thermiques du mucilage. Ensuite, pour la première fois, l’oxydation du mucilage au 2,2,6,6-тетраметилпиперидин-1-оксил (TEMPO) и реализованы до достижения успеха. Puis, nous avons pu mettre en évidence l’efficience de l’xydation assistée par ultrasons compare à la méthode classique lors de la montée en échelle du procédé.En vue d’améliorer la совместимые волокна / матрица из композитов и волокна végétales, des traitements appliqués sur des fibres, de lin onté effectués, amenant to l’individualisation des fibres et al’amélioration de l’oxydation des sonifiées. Ces différents matériaux ont permis de formuler un panel de nouveaux biocomposites. Les DGEI онт été valorisés par la confection d’une résine réticulée par une amine renforcée par des des Fibre longues de lin dont les performances, sont идентичны aux composites pétro-sourcés.Par la suite, la sonicationdes fibres Courtes de lin a mené à l’amélioration des propriétés mécaniques de Composite PLA / Lin. Использование оксидного слоя слизистой оболочки представляет собой демонстрацию аспектов, связанных с включением слизистой оболочки, на основе композитных материалов и резисторов на сжатие.
ТЕПЛОПРОВОДНОСТЬ СТЕКЛЯННОГО ВОЛОКНА
ТЕПЛОВАЯ ПРОВОДИМОСТЬ ИЗ СТЕКЛА ШЕРСТИ ВОЛОКНА Oldřich Zmeškal 1, Martin Nežádal 1 и ubomír Lapčík 2 1 Институт физической и прикладной химии, факультет химии, Технологический университет Брно, Purkyňova 118, CZ-61200 Брно, Чешская Республика 2 Институт физики и материаловедения, технологический факультет университета Томаса Баты, Злин, электронная почта: zmeskal @ fch.vutbr.cz Аннотация Статья посвящена исследованию термических свойств волокнистых материалов. Для определения теплоемкости, температуропроводности и теплопроводности использовался метод переходных импульсов [1]. Результаты коррелировали с размером нагревательного элемента и толщиной измеряемого материала. С помощью электрической модели были обнаружены диссипации тепловой системы. Ключевые слова: стекловолокно, фрактальная структура, теплоемкость, температуропроводность, теплопроводность и переходный импульсный метод 1.Введение Волокнистые материалы (например, стекловата) часто используются в качестве теплоизоляции в воздушной и строительной промышленности. Поэтому важно разработать простые методы, которые позволят определить его тепловые свойства (удельную теплоемкость, температуропроводность и теплопроводность) с подходящей точностью. Чаще всего эти значения измеряются в стабильном состоянии [1]. В этом случае необходимо обеспечить определенный тепловой режим (метод защищаемого теплового стола, метод индикатора теплового потока).Остальные методы основаны на определении тепловых параметров по ступенчатым или импульсным характеристикам [2, 3]. В настоящее время разработаны методы, основанные на оценке реакции на периодическое (гармоническое) изменение тепла [4]. В данной статье для определения тепловых свойств волокнистых материалов использовался переходный импульсный метод. 2. Экспериментальная часть. Для реакции на импульсный нагрев использовался Thermophysical Transient Tester 1.02. Он был разработан в Институте физики Словацкой академии наук [5].Блок-схема автоматизированного измерительного рабочего места представлена на рис. 1. Измеряемый образец, помещенный в изотермическую камеру, состоял из трех частей цилиндрической формы. Между первой и второй частями помещался источник тепла (никелевый лист толщиной 20 мкм и радиусом R 2 = 2 см). Между второй и третьей частью было размещено одно соединение дифференциально подключенной термопары (NiCr-Ni). Второе соединение размещалось на теплообменнике, где с помощью термостата поддерживалась постоянная температура.Температура измерялась сопротивлением платины (Pt100 Ом). Нагрев образца осуществлялся прямоугольным импульсом тока от программно-направленного источника Mesit Z-YE-3T / x. Подаваемое тепло рассчитывалось по параметрам импульса (по напряжению U, току I и длительности импульса t) 65
Стекловата — теплоизоляция
Стекловата производится по технологии Crown (рис. 13.1), аналогичной той, что используется для производства минеральной ваты. Толстая струя стекла течет из печи в копилку и под действием силы тяжести в быстро вращающуюся тарелку из стального сплава, пробитую сотнями мелких отверстий по периметру.Центробежная сила выталкивает волокна, которые затем превращаются в тонкие волокна под действием струи горячего воздуха. Волокна опрыскиваются связующим веществом, а затем всасываются на конвейер для получения мата соответствующей толщины. Его выдерживают в печи для застывания связующего, затем нарезают, обрезают и упаковывают.
- Рис. 13.1 Процесс изготовления стекловаты с помощью коронки
Стекловата негорючая, водоотталкивающая, устойчивая к гниению и не содержит ХФУ или ГХФУ.Доступен в различных формах продукта:
• свободный для утепления стенок выдувной полости;
• рулоны без облицовки или ламинированные между крафт-бумагой и полиэтиленом для крыш, деревянных каркасных конструкций, внутренних стен и полов;
• войлок полужесткий с водоотталкивающим силиконом для полного заполнения пустот новой кладки;
• жесткие войлоки для частичного заполнения пустот в новой кладке;
• устойчивые к сжатию плиты для монолитных бетонных или балочно-плитных перекрытий;
• ламинат из жесткой стекловаты и гипсокартона для сухой облицовки;
• Жесткие панели с ПВХ-покрытием для открытой заводской кровли.
(Теплопроводность изделий из стекловаты обычно составляет от 0,031 до 0,040 Вт / м · К при 10 ° C.)
Звуко- и огнестойкие свойства стекловаты аналогичны свойствам минеральной ваты. Звукопоглощающие лоскутные одеяла из стекловаты, которые имеют перекрытия для герметизации между соседними блоками, используются для снижения ударного шума в бетонных и деревянных плавающих полах. Стандартные одеяла подходят для использования в легких перегородках и над натяжными потолками.
Стекловатана полимерной связке, обработанная водоотталкивающим средством, используется для производства некоторых потолочных плиток, которые соответствуют требованиям по распространению огня класса 0 Строительных норм (BS 476: части 6 и 7), а также обеспечивают звукопоглощение для снижения уровней реверберирующего шума.
Читать здесь: Блоки из ячеистого или вспененного стекла
Была ли эта статья полезной?
Анизотропная структура стекловаты, определенная измерениями воздухопроницаемости и теплопроводности
Журнал поверхностных инженерных материалов и передовых технологий Том 06 No 02 (2016), Идентификатор статьи: 65715,8 стр.
10.4236 / jsemat.2016.62007
Анизотропная структура стекловаты, определенная измерениями воздухопроницаемости и теплопроводности
Laurent Marmoret 1 * , Hussein Humaish 1,2 , Anne Perwuelz 3,4 , Hassen Béji 1
1 Université de Picardie Jules Verne-Laboratoire des Technologies Innovantes-Equipe Phénomènes de Transfert et Construction Durable, IUT Génie Civil-Avenue des Facultés, Амьен, Франция
2 Фонд технических институтов, Технический институт, Департамент геодезии , Аль-Кут, Ирак
3 University Lille-Nord de France, Лилль, Франция
4 ENSAIT, GEMTEX, Roubaix, France
Авторские права © 2016 авторов и Scientific Research Publishing Inc.
Эта работа находится под лицензией Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Поступила 06.01.2016; принята 18 апреля 2016 г .; опубликовано 21 апреля 2016 г.
РЕФЕРАТ
Мы хотим сделать вывод об интересе к процессу «гофрирования», используемому для производства стекловаты, и провести сравнение коэффициента анизотропии, полученного из структурных свойств (воздухопроницаемость), а также тепловых свойств ( теплопроводность и коэффициент диффузии).Приведены основные структурные (плотность, пористость, удельная поверхность, воздухопроницаемость) и тепловые (проводимость, коэффициент диффузии, теплоемкость) характеристики этой стекловаты. Температурные результаты определяются с помощью нескольких методов (горячий диск (HD), измеритель теплового потока (HFM) и защищенная горячая пластина).
Ключевые слова:
Волокнистый изоляционный материал, стекловата, воздухопроницаемость, теплопроводность, фактор анизотропии
1. Введение
После энергетического кризиса 1974 года промышленно развитые страны проводят политику энергосбережения. что привело к значительному развитию сектора теплоизоляции в строительной отрасли.В настоящее время потребление энергии зданиями составляет более 40% конечного потребления энергии в Европейском Союзе. Основное решение для снижения энергопотребления — увеличение толщины теплоизоляции внутри ограждающих конструкций здания. Но, несмотря на интерес, знания о тепловом поведении изоляционных материалов очень несовершенны [1]. Теплообмен в волокнистых теплоизоляционных материалах, составляющих высокодисперсные газонаполненные системы, является сложным. Эффективные тепловые свойства определяются для того, чтобы учесть: 1) процесс теплопередачи, который включает теплопроводность, излучение и конвекцию; 2) процесс диффузии массы и 3) анизотропия структуры.Если предположить, что в первом подходе волокна (или поры) ориентированы случайным образом во всех направлениях, результирующая эффективная проводимость будет изотропной [2]. Это упрощение позволяет изучать другие сложные механизмы, такие как температурная зависимость эффективной теплопроводности при повышенных температурах [3]. Была изучена общая теплопроводность в пористых средах, содержащих случайно ориентированные поры, о чем свидетельствует большой объем публикаций за последние два десятилетия [4].В случае случайно ориентированных пор общая теплопроводность сильно зависит от внутренней теплопередачи через поверхность пор [5]. Кажущаяся проводимость в основном связана с теплопередачей через газ [6].
Существует потребность в изучении структурных свойств материала для анализа и интерпретации термического поведения. В настоящей работе представлены три основных характеристики структуры стекловаты: отношение объема твердой фазы к общему объему (пористость), степень фрагментации твердой фазы (удельная поверхность) и пространственная организация твердой фазы (фактор анизотропии).Объект исследования — стекловата — не обычный изоляционный материал. Этот материал был произведен с помощью инновационного процесса опрессовки, описанного Bergonnier et al. [7]. Коэффициент анизотропии определяется из экспериментальных значений теплопроводности и диффузии, и сравниваются измерения воздухопроницаемости. Мы делаем вывод о влиянии процесса гофрирования, сравнивая коэффициенты анизотропии, полученные этими экспериментальными методами, с литературными значениями для обычной стекловаты.
2.Материалы
Изучена стекловата, предназначенная для утепления крыш. Пористые волокнистые материалы содержат три компонента: волокно, воздух и связующее. Состав компонентов, их свойства и расположение определяют структуру материала. Перед стадией отверждения волокнистый мат обрабатывается для создания структуры, придающей материалу более сильное механическое сопротивление (сжатию, разрыву или сдвигу). Этот шаг называется «опрессовкой». Он заключается в нарушении естественной слоистой структуры мата посредством поперечного и осевого сжатия в реальном времени.Более плотные слои изгибаются во время осевого сжатия, чтобы обеспечить более изотропную ориентацию волокон (рис. 1) и, в частности, большее количество вертикальных волокон. Механическая жесткость и прочность намного выше, чем у изначально слоистого материала, как показано в работе Bergonnier et al. [7]. Связующие вещества появляются (рис. 2) в виде капель и кластеров и довольно равномерно распределяются по волокнам. Средняя толщина связующего оценивается примерно в 500 нм.Волокна в значительной степени состоят из переработанного стекла, а его химический состав относится к классическим E-типам [8]. Типичные композиции состоят из 90% стекловолокна и 10% связующего. Точный состав нашей стекловаты точно не определен, но аналогичные ваты изучались в других работах, в которых приводится их подробный состав [7]. Сканирующий электрон Mi-
Рисунок 2. Сканирующая электронная микроскопия стекловаты [8]. Кросскопия
(SEM, Quanta 200 FEG Environment) показывает неоднородность геометрии волокон и случайное распределение волокон (рис. 2 [8]).В принципе, волокна любого размера (длины и толщины) могут использоваться для теплоизоляционных материалов в строительстве. Однако предпочтительнее тонкий (d = 4–12 мкм) и толстый (d = 13–15 мкм). Статистическая обработка изображений показывает, что средний диаметр 13 м соответствует диаметру толстых волокон.
3. Структурные характеристики
3.1. Плотность и пористость
Насыпная плотность ρ 0 может быть определена из выражения:
(1)
где ε s и ε — объемные доли твердого вещества и газа (пористость), соответственно высокодисперсные системы, а ρ f — истинная плотность волокна (обычно равная 2500 — 2800 кг ∙ м −3 ) для стекла.Для оценки общей пористости (если пренебречь недоступной пористостью, такой как закрытая пористость), для таких материалов, как кладка, образец материала подвергается вакуумному давлению для удаления воздуха перед погружением в дистиллированную воду. Но для волокнистого образца этот метод нельзя было использовать, потому что вода не удерживается и наблюдается расширение объемной структуры. Если истинная плотность волокна известна, можно использовать уравнение (1). В данной работе мы предпочли применить соотношение (2).
(2)
Образец сушили в печи с регулируемой температурой 40 ° C в течение 3 часов. Масса образца измеряется на весах Mettler Toledo (LJ16) для проверки содержания влаги в образце. Объемная плотность ρ 0 определяется путем измерения массы известного объема материала. Истинная плотность ρ v определяется гелиевым пикнометром (Accupyc 1330). Гелий — инертная жидкость для волокнистой структуры. Образец помещается внутрь цилиндрической ячейки.Объем (V = 10 см 3 ) был выбран из-за того, что элементарный объем, представляющий (EVR) материала, здесь, главным образом, зависит от толщины волокна. Результаты представлены в таблице 1.
Таблица 1. Экспериментальные плотности и пористость стекловаты.
Экспериментальное отклонение, полученное для измерения истинной плотности, составляет 41,4 кг ∙ м −3 (или 1,6%). Отклонение для определения насыпной плотности можно оценить до 3% с точностью прибора.Поскольку насыпная плотность выше (Таблица 1), чем 20 кг ∙ м −3 , стекловата может быть отнесена к категории тяжелых изоляционных материалов, как и большинство изоляционных ват, используемых в строительной промышленности. Стекловата имеет важную пористость около 97%.
3.2. Удельная поверхность
Удельная поверхность (S p ) выражает степень разделения твердой фазы. Для тепломассопереноса более эффективна форма с более высоким значением удельной поверхности. Для заданного объема V (или массы материала) разные геометрические формы создают разную площадь поверхности (A sg ), с помощью которой можно взаимодействовать с окружающей средой.Объемную поверхность (S V ) и удельную поверхность (S м ) можно определить как:
(3)
Порозиметр с ускоренной площадью поверхности (ASAP, ASAP 220 Micromeritics) был использован для экспериментального определения удельной поверхности. . Метод основан на том факте, что материалы имеют открытую пористость, которая адсорбирует окружающий газ. ASAP, используемый с содержанием криптона ниже 35%, автоматически определяет удельную поверхность модели BET. Важное значение (S м = 0.2332 м 2 ∙ г -1 ), показывающее, что материал мелкодисперсный.
3.3. Воздухопроницаемость и коэффициент анизотропии
Тестер воздухопроницаемости (TEXTEST FX 3300) использовался для определения проницаемости образцов стекловаты [9]. Принцип измерения заключался в приложении падения давления ΔP (Па) на заданную площадь A (м²) материала. Когда поток стабилизируется по толщине образца, прибор задает скорость воздуха V с (мм ∙ с -1 ).В этой работе был применен стандарт испытаний промышленных тканей ISO 9237 (1995F). Этот тест рекомендует площадь поверхности 20 см 2 , перепад давления 200 Па и требует, чтобы образцы были предварительно кондиционированы в стандартной атмосфере 20 ° C и относительной влажности 65%. Воздухопроницаемость k A (м ∙ с −1 ) измеряется в трех основных направлениях образца, как показано на рисунке 3. k A // 1 и k A // 2 относятся к компонентам тензора проницаемости, параллельным направлению стратификации.k A // 1 — компонент в направлении, параллельном волокнам, а k A // 2 — компонент в направлении, перпендикулярном волокнам. Воздухопроницаемость
в третьем направлении измеряется перпендикулярно плоскости стратификации и соответствует направлению теплового потока при использовании стекловаты.
Коэффициент анизотропии AF определяется отношением параллельной воздухопроницаемости к перпендикулярной проницаемости:
(4)
Была проведена серия из пяти измерений для каждого направления.Коэффициент анизотропии (AF) равен 1,55. Это значение ниже, чем значение для обычной стекловаты [1], равное 2. Анизотропия была уменьшена за счет процесса «опрессовки».
4. Характеристика теплопроводности
4.1. Методика эксперимента
Существует множество методов измерения теплопроводности. Они широко классифицируются как стационарные методы и переходные методы. Из-за высокой плотности (более 75 кг ∙ м −3 ) общая теплопередача в стекловате в основном происходит за счет переноса в газе (Рисунок 4) [6].Передача за счет излучения и проводимости в твердых телах может считаться незначительной.
Рис. 3. Воздухопроницаемость, измеренная относительно плоскости стратификации.
Рисунок 4. Механизм теплопередачи в стекловате [6].
Наиболее адаптированной технологией для изоляционных материалов (американские стандарты ASTM C 177-97 и европейские стандарты ISO 8302) с учетом общей теплопередачи являются стационарные методы и, в частности, защищенная горячая плита (GHP).Другой традиционный стационарный метод — это метод измерения теплового потока (HFM) (американские стандарты ASTM C 518-98 и европейские стандарты ISO 8301). GHP, как и другие стационарные методы, страдает серьезными недостатками. Им требуется длительное время для установления устойчивого температурного градиента по образцу, и этот температурный градиент должен быть большим. Размер образца также должен быть большим, а сопротивление контакта между термопарой и поверхностью образца считается основным источником ошибок. Некоторые свойства материала могут быть изменены с течением времени для достижения устойчивого состояния.
Переходные методы измеряют реакцию (температуру, расход) на тепловой сигнал (расход). Поэтому эти методы отличаются в основном коротким временем, необходимым для получения желаемых результатов. Горячая полоса может использоваться для измерения температуропроводности и проводимости твердых неэлектропроводных материалов. Самой последней разработкой метода горячей полосы является метод Hot Disc (HD). Основной принцип этого метода основан на использовании плоского элемента, который действует как датчик температуры и как источник тепла [10] [11].Этот элемент состоит из электропроводящего узора из тонкой никелевой фольги (10 мкм) спиральной формы, залитого в изолирующий слой, обычно сделанный из каптона (толщиной 70 мкм). Зонд HD расположен между двумя образцами, при этом обе поверхности сенсора контактируют с двумя поверхностями образцов с аналогичными характеристиками. Один из наиболее важных параметров называется глубина зондирования
. Поэтому глубина зондирования должна быть меньше толщины этого образца, чтобы подтвердить предположение о бесконечности образца.Кроме того, оптимальное время эксперимента должно быть определено как
, чтобы оптимизировать наилучшее сочетание коэффициентов чувствительности для оценки свойств теплопроводности и температуропроводности. Повышенная температура также должна быть ниже или равной 1˚C. Принимая во внимание термические характеристики стекловаты в литературе, используется датчик радиуса 14,63 мм. Толщина и диаметр образца составляют более 30 мм и 90 мм соответственно, что соответствует гипотезе о бесконечности среды.
4.2. Результаты
В соответствии с ISO 8302, защищенная горячая плита (GHP) была использована для определения теплопроводности стекловаты L1 в зависимости от средней температуры образца (рис. 5). Размер образца 246 × 250 × 60 мм. Для достижения разницы температур 10 ° C между двумя внешними поверхностями образца в соответствии со стандартом ISO 8302 необходимо около 6 часов. Это равновесие достигается за счет использования теплового потока 0,4 Вт. Эту процедуру повторяют для последовательных средних температур образца 10C, 20˚C, 30˚C и 40˚C.При температуре 10˚C (нормативное значение) теплопроводность составляет: l = 0,0369 ± 0,0007 Вт ∙ (м ∙ K) −1 . Изменение теплопроводности (l) в зависимости от средней температуры образца (MT) показывает линейную кривую, определяемую как l = 0,03443 + 0,000244.MT (R-квадрат: 99,28%). Стандарт ISO 8302 рекомендует погрешность измерения 7%. На рисунке 5 указаны планки погрешностей, а также экспериментальные значения HFM и Hot Disc.
Объемный анизотропный модуль метода Hot Disc был использован для определения теплопроводности и температуропроводности в осевом и радиальном направлениях (Рисунок 5 и Таблица 2).Выходная мощность и время измерения соответственно равны 20 м ∙ Вт и 160 с. Мы выбрали временной тест, рекомендованный Международным стандартом
Рисунок 5. Сравнение экспериментальных значений GHP, HFM и Hot Disc для стекловаты.
Таблица 2. Экспериментальная теплопроводность стекловаты.
в соответствии с ISO 22007-2. В случае потока рекомендуемое значение 0,1 Вт вызывает повышение температуры более чем на 1. Мы выбрали 20 мВт — минимальное значение, которое Hot Disc может принять, но оно создает повышенную температуру на 1.24˚C. Из-за низкой теплопроводности стекловаты очень трудно соблюдать максимальное повышение на 1 ° C: одно из условий хорошего теста. Результаты получены для характерного времени 0,528 с и глубины зондирования 21,3 мм.
Осевая проводимость (l a ) обозначается как сквозная плоскость в образце, перпендикулярном термозонду. В нашем случае осевая проводимость совпадает с k A // 1 и k A // 2 (рисунок 3). на рисунке 3 и соответствует направлению теплового потока при использовании в здании. Когерентные значения были получены с использованием защищенной горячей пластины (GHP), измерителя высокого расхода (HFM) и горячего диска (только в радиальном направлении), но не с результатами, полученными от горячего диска в осевом направлении. Другой интересный момент — сравнить теплопроводность с пористостью из литературных значений [12]. Мы можем заметить, что самое низкое значение теплопроводности получается при пористости 97% (Рисунок 6). По сравнению с литературными данными, теплопроводность нашей шерсти более важна.Обжимной процесс может быть объяснением.
Метод горячего диска позволяет определять теплопроводность в трех основных направлениях образца. Как и прежде, по воздухопроницаемости коэффициент анизотропии определяется как отношение проводимости, соответствующей теплопередаче вдоль плоскости стратификации, к проводимости, соответствующей теплопередаче, перпендикулярной плоскости расслоения. Отношение осевой проводимости к радиальной проводимости в сухом состоянии равно 1,32 (таблица 2).Это значение близко к коэффициенту анизотропии воздухопроницаемости (таблица 3). Мы можем заметить, что такое же соотношение получается для проводимости (AF_λ) и коэффициента диффузии (AF_a).
Эти примечания подтверждают, что теплопроводность и диффузия в основном передаются через поры воздухом внутри пор.
5. Заключение
Протестированная стекловата не является обычной, потому что она была произведена методом опрессовки. Следовательно, более низкий коэффициент анизотропии (равный 1,4) получается путем измерения воздухопроницаемости вместо коэффициента, равного 2
Рисунок 6.Согласованность экспериментальных значений (L1) с литературными.
Таблица 3. Результаты экспериментов по воздухопроницаемости для стекловаты.
обычно встречается. Мы определили другие структурные параметры для характеристики высокой пористости (97% от истинной и объемной плотности) и мелкодисперсной структуры (высокая удельная поверхность 0,2126 м 2 ∙ г −1 ). Проведено сравнение экспериментальных результатов по воздухопроницаемости и теплопроводности.Такой же коэффициент анизотропии получается, показывая согласованность результатов по структурным и тепловым параметрам. Теплопроводность измеряется несколькими методами: защищенной горячей пластиной (GHP), измерителем высокого расхода (HFM), горячим диском. Между этими методами были получены когерентные значения, хотя необходимо установить установившееся состояние, а метод Hot Disc — переходный. Однако мы заметили, что радиальные значения когерентны, а не осевые. Анизотропия теплопроводности и диффузии на данный момент не учитывается в тепловых расчетах в случае французских термических правил.
Благодарности
Авторы выражают глубокую благодарность J-B Rieunier ISOVER, а также техническому персоналу микроскопической платформы UPJV Амьен, ENSAIT-GEMTEX Roubaix и LASIE La Rochelle University.
Цитируйте эту статью
Лоран Марморе, Хусейн Хумайш, Анн Первуэльц, Хассен Бежи, (2016) Анизотропная структура стекловаты, определяемая измерениями воздухопроницаемости и теплопроводности. Журнал поверхностных инженерных материалов и передовых технологий , 06 , 72-79.doi: 10.4236 / jsemat.2016.62007
Ссылки
- 1. Бломберг, М. и Кларсфельд, С. (1983) Полуэмпирическая модель теплопередачи в изоляционных материалах из сухого минерального волокна. Журнал теплоизоляции, 6, 156-173.
- 2. Кавиани М. (1991) Принципы теплопередачи в пористых средах. Спрингер, Нью-Йорк.
http://dx.doi.org/10.1007/978-1-4684-0412-8 - 3. Зумбруннен, Д.А., Висканта, Р. и Инкропера, Ф.П. (1986) Теплообмен через пористые твердые тела со сложной внутренней геометрией.Международный журнал тепломассообмена, 29, 275-284.
http://dx.doi.org/10.1016/0017-9310(86)-6 - 4. Ван, Дж., Карсон, Дж. К., Норт, М.Ф. и Cleland, D.J. (2008) Новая структурная модель эффективной теплопроводности для гетерогенных материалов с ко-непрерывными фазами. Международный журнал тепло- и массообмена, 51, 2389-2397.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.028 - 5. Цзоу Д.Ю. (1991) Влияние внутреннего теплообмена в полостях на общую теплопроводность.Международный журнал тепломассообмена, 34, 1839-1846.
http://dx.doi.org/10.1016/0017-9310(91)- -B
- 6. Бэнквалл, К. (1973) Теплообмен в волокнистых материалах. Журнал тестирования и эволюции, 1, 235-243.
http://dx.doi.org/10.1520/JTE10010J - 7. Бергонье, С., Хильд, Ф., Ренье, Ж.Б. и Ру, С. (2005) Неоднородности деформации и локальная анизотропия в гофрированной стекловате. Журнал материаловедения, 40, 5949-5954.
http: // dx.doi.org/10.1007/s10853-005-5068-8 - 8. Ахчак, Ф., Джеллаб, К., Марморет, Л., Беджи, Х. (2009) Гидравлическая, морфологическая и теплофизическая характеристика стекла Шерсть: от макроскопического к микроскопическому. Строительные и строительные материалы, 23, 3214-3219.
http://dx.doi.org/10.1016/j.conbuildmat.2009.06.018 - 9. Марморет, Л., Левандовски, М., Первуэльц, А. (2012) Исследование воздухопроницаемости анизотропной стекловаты Волокнистые изделия. Транспорт в пористой среде, 93, 79-97.
- 10. Log, T. and Gustafsson, S.E. (1995) Метод переходных плоских источников (TPS) для измерения свойств теплопереноса строительных материалов. Огонь и материалы, 19, 39-43.
http://dx.doi.org/10.1002/fam.8101 - 11. Густавссон, М., Каравацки, Э. и Густавссон, С.Е. (1994) Теплопроводность, температуропроводность и удельная теплоемкость тонких образцов по измерениям переходных процессов с помощью датчиков с горячим диском. Обзор научных инструментов, 65, 3856-3859.
http://dx.doi.org/10.1063/1.1145178 - 12. Кларсфельд, С., Боулант, Дж. И Ланглайс, К. (1987) Теплопроводность изоляционных материалов при высокой температуре: стандартные материалы и стандарты, термическое Утеплители: материалы и системы. ASTM International, 922, 665-676.
ПРИМЕЧАНИЯ
* Автор для переписки.
Glasswool (изоляция из стекловолокна)
СТЕКЛЯННАЯ ШЕРСТЬ СО СВЯЗАННЫМ ВОЛОКНОМ ПОДТВЕРЖДАЕТ IS 8183
Изготовлена из связанного стекловолокна.Для тепло- и звукоизоляции, доступны с алюминиевой фольгой или без нее. Идея для изоляции под палубой, над подвесным потолком и для воздуховодов.
Размер: Рулоны стандартной ширины 1,2 м
Плотность: 16, 24, 32 и 48 кг / м3
Толщина: 25, 50 мм Aslo RP Ткань и жесткие плиты и т. Д.,
Стекловата Изоляция является одной из самых широко используемые формы изоляции во всем мире благодаря ее тепловым и акустическим свойствам, легкому весу, высокой прочности на разрыв и исключительной упругости.Стекловата является одним из наиболее распространенных типов изоляции, предпочитаемых в приложениях с рабочими температурами до 250 ° C.
Стекловата состоит из тонких длинных неорганических волокон, связанных вместе высокотемпературным связующим. Эти волокна (каждое диаметром примерно 6-7 микрон) распределены так, чтобы удерживать в себе миллионы крошечных карманов воздуха, тем самым создавая отличную термическую и звукоизоляцию. Небольшой вес стекловаты также дает значительные преимущества при транспортировке и установке.Кроме того, стекловата химически инертна и не содержит примесей, таких как железная дробь, сера и хлорид. Продукт не вызывает коррозии металла и не способствует росту плесени. Он изготовлен из возобновляемого сырья и является экологически чистым на всех этапах.
Из стекловаты получают изделия различной толщины и плотности. Поставляется в виде рулонов и пластин с бумагой из алюминиевой фольги или без нее.
Виды облицовки: алюминиевая фольга, черная стеклоткань, стеклоткань.
Ассортимент продукции: Плотность от 12 кг / куб. М до 100 кг / куб. М и толщина от 12 мм до 100 мм
Диапазон температур: Стекловата подходит для применений в диапазоне от минус 195 градусов Цельсия до плюс 230 градусов Цельсия. Для специальных применений до 450 градусов. Облицовка из алюминиевой фольги подходит для температуры до 120 градусов по Цельсию.
Химическая стабильность: Стекловата химически инертна. Применение не вызывает и не ускоряет коррозию. Стекловата устойчива к гниению и не имеет запаха.
Пожарная безопасность: Стекловата негорючая в соответствии с BS 476, негорючесть, чрезвычайно низкое распространение пламени, отсутствие выбросов густого дыма и токсичных газов при недостатке кислорода (высокий кислородный индекс 70%).
Биологические: Стекловата неорганическая. Не способствует росту грибков и паразитов.
Размеры: Стекловата устойчива при различных условиях температуры и влажности при правильном нанесении. Отличная прочность на разрыв, отсутствие провисания и оседания. Жесткие плиты обладают высоким сопротивлением сжатию.
Устойчивость к вибрации и тряске: соответствует BS 2972.
Содержание влаги: менее 2% в соответствии с BS 2972.
Водопоглощение: менее 2% в соответствии с BS 2972.
Содержание дроби: Нет в соответствии с BS 2972.
Без запаха: Соответствует BS 2972.
Отсутствие роста плесени: Соответствует BS 2972.