Титан — свойства, характеристики, сплаты
В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.
Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.
Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.
Физические и механические свойства
Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.
По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.
Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.
В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».
Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента
Химические свойства
Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.
Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.
Способы получения
Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
1. Магниетермический процесс.
Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием.
2. Гидридно-кальциевый метод.
Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.
3. Электролизный метод.
Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.
4. Йодидный метод.
Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.
Применение титана
Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.
Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.
Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов.
Титан. Характеристики физико-механических свойств титана — «Тиком-М»
Основные сведения о титане
Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия титана
Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана
В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Характеристики физико-механических свойств титана (ВТ1-00)
Плотность r , кг/м3 | 4,5 × 10–3 |
---|---|
Температура плавления Тпл, ° С | 1668± 4 |
Коэффициент линейного расширения a × 10–6, град–1 | 8,9 |
Теплопроводность l , Вт/(м × град) | 16,76 |
Предел прочности при растяжении s в, МПа | 300–450 |
Условный предел текучести s 0,2, МПа | 250–380 |
Удельная прочность (s в/r × g)× 10–3, км | 7–10 |
Относительное удлинение d , % | 25–30 |
Относительное сужение Y , % | 50–60 |
Модуль нормальной упругости Е´ 10–3, МПа | 110,25 |
Модуль сдвига G´ 10–3, МПа | 41 |
Коэффициент Пуассона m , | 0,32 |
Твердость НВ | 103 |
Ударная вязкость KCU, Дж/см2 | 120 |
Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.
Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.
Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.
Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.
Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.
Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).
При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.
Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.
Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.
Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.
Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.
При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).
Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.
Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Таблица 17.1
Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)
Марка | Ti, не менее | Не более | Твердость НВ, 10/1500/30, не более | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Si | Ni | C | Cl | N | O | |||
ТГ-90 | 99,74 | 0,05 | 0,01 | 0,04 | 0,02 | 0,08 | 0,02 | 0,04 | 90 |
ТГ-100 | 99,72 | 0,06 | 0,01 | 0,04 | 0,03 | 0,08 | 0,02 | 0,04 | 100 |
ТГ-110 | 99,67 | 0,09 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,05 | 110 |
ТГ-120 | 99,64 | 0,11 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,06 | 120 |
ТГ-130 | 99,56 | 0,13 | 0,03 | 0,04 | 0,03 | 0,10 | 0,03 | 0,08 | 130 |
ТГ-150 | 99,45 | 0,2 | 0,03 | 0,04 | 0,03 | 0,12 | 0,03 | 0,10 | 150 |
ТГ-Тв | 99,75 | 1,9 | – | – | 0,10 | 0,15 | 0,10 | – | – |
Таблица 17. 2
Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)
Обозначения марок | Ti | Al | V | Mo | Sn | Zr | Mn | Cr | Si | Fe | O | H | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ВТ1-00 | Основа | – | – | – | – | – | – | – | 0,08 | 0,15 | 0,10 | 0,008 | 0,04 | 0,05 |
ВТ1-0 | То же | – | – | – | – | – | – | – | 0,10 | 0,25 | 0,20 | 0,010 | 0,04 | 0,07 |
ВТ1-2 | То же | – | – | – | – | – | – | – | 0,15 | 1,5 | 0,30 | 0,010 | 0,15 | 0,10 |
ОТ4-0 | То же | 0,4–1,4 | – | – | – | 0,30 | 0,5–1,3 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4-1 | То же | 1,5–2,5 | – | – | – | 0,30 | 0,7–2,0 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4 | То же | 3,5–5,0 | – | – | – | 0,30 | 0,8–2,0 | – | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ВТ5 | То же | 4,5–6,2 | 1,2 | 0,8 | – | 0,30 | – | – | 0,12 | 0,30 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ5-1 | То же | 4,3–6,0 | 1,0 | – | 2,0 –3,0 | 0,30 | – | – | 0,12 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ6 | То же | 5,3–6,8 | 3,5–5,3 | – | – | 0,30 | – | – | 0,10 | 0,60 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ6с | То же | 5,3–6,5 | 3,5–4,5 | – | – | 0,30 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,04 | 0,10 |
ВТ3-1 | То же | 5,5–7,0 | – | 2,0–3,0 | – | 0,50 | – | 0,8–2,0 | 0,15–0,40 | 0,2–0,7 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ8 | То же | 5,8–7,0 | – | 2,8–3,8 | – | 0,50 | – | – | 0,20–0,40 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ9 | То же | 5,8–7,0 | – | 2,8–3,8 | – | 1,0–2,0 | – | – | 0,20–0,35 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ14 | То же | 3,5–6,3 | 0,9–1,9 | 2,5–3,8 | – | 0,30 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ20 | То же | 5,5–7,0 | 0,8–2,5 | 0,5–2,0 | – | 1,5–2,5 | – | – | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ22 | То же | 4,4–5,7 | 4,0–5,5 | 4,0–5,5 | – | 0,30 | – | 0,5–1,5 | 0,15 | 0,5–1,5 | 0,18 | 0,015 | 0,05 | 0,10 |
ПТ-7М | То же | 1,8–2,5 | – | – | – | 2,0–3,0 | – | – | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
ПТ-3В | То же | 3,5–5,0 | 1,2–2,5 | – | – | 0,30 | – | – | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
АТ3 | То же | 2,0–3,5 | – | – | – | – | – | 0,2–0,5 | 0,20–0,40 | 0,2–0,5 | 0,15 | 0,008 | 0,05 | 0,10 |
Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.
Титан и его сплавы: характеристики, свойства
На сегодняшний день титан занимает 4-е место по использованию в промышленности. Однако его активная добыча и производство начинается только с 40-х годов 20 века. Титан и его сплавы обладают уникальными характеристиками и требуют более внимательного рассмотрения при металлообработке.
ТитанОсновные сведенияТитан — металл серебристого цвета, который входит в 4 группу 4 периода в периодической таблице. По официальным сведениям он занимает 10 место по распространению в природе.
Изначально металл применялся в народном хозяйстве, но после выявления его сверхпрочности при малом удельном весе, титан и его сплавы начали использовать при строении самолётов, кораблей, ракет и машин.
История открытияВпервые оксид титана был обнаружен в 1791 году. Сделал это открытие У. Грегор (англичанин). Он взял пробу железистого песка на пляже Корнуолла и проводил над ним исследования. В результате экспериментов учёный выделил оксид неизвестного металла, которому так и не дал название. Назвал этот элемент титаном другой учёный — Мартин Генрих Клапрот (немец). В 1825 году другой исследователь Йёнс Якоб Берцелиус смог выделить образец этого металла из оксида.
Производство и изготовлениеБлагодаря распространённости в природе добывать руду, содержащую титан, не сложно. Самые распространённые виды руды, в которых содержится этот металл — брукит, ильменит, анатаз и рутил. Однако дальнейшие способы обработки титана (плавка, закалка и старение) считаются дорогостоящими. Существует несколько этапов получения чистого металла из руды:
- В первую очередь добывается титановый шлак, с помощью разогревания ильменита до 1650 градусов.
- Далее шлак проходит процесс хлорирования.
- После этого с помощью печей сопротивления производится титановая губка.
- Для получения чистого металла заключительным этапом обработки является процесс рафинирования.
Если нужно получить слитки титана, губку на его основе переплавляют в вакуумной печи.
Магниетермический процесс
Магниетермическое восстановление — популярный метод получения металла. Проведение технологического процесса:
- Расплавляется оборотный магниевый конденсат.
- Сливается конденсат хлористого магния.
- При температуре 800 градусов, жидкий тетрахлорид титана с жидким магнием подаются в форму для застывания. Скорость подачи — 2,1–2,3 г/ч см2.
Постепенно температура снижается до 600 градусов.
Гидридно-кальциевый метод
Это промышленный метод восстановления металла. Процесс проведения работ:
- При температуре 500 градусов Цельсия металлический кальций насыщается водородом.
- Далее его смешивают с двуокисью титана. Компоненты нагревают в реторте, постепенно повышая температуру до 1100 градусов.
- Спекшиеся компоненты вымывают из реторты.
- Далее проводится обработка соляной кислотой.
- Титановый порошок сушат, запекают в индукционных печах при температуре около 1400 градусов.
На спекшуюся массу должно воздействовать давление 10в-3 мм.
Электролизный метод
Способ получения сплава, основанный на применении электрического тока. Напряжение воздействует на ТiO2, ТiСl4. До этого их растворяют с помощью расплавленных солей фторидов.
Йодидный метод
Способ получения металла после термической диссоциации TiJ4. Изначально его получают при реакции паров йода с металлическим титаном.
Достоинства и недостаткиЧтобы получить сплав высокой чистоты, необходимо применять последний способ получения соединения. Три первых метода позволяют быстро получать технический титан.
Как и у любого другого металла, у титана есть сильные и слабые стороны. К преимуществам относятся:
- малый вес;
- коррозийная стойкость;
- устойчивость к воздействию высоких температур;
- высокая прочность — больше, чем у лучших образцов стали.
Недостатки:
- Пыль и стружка, остающаяся после обработки титановых заготовок, может воспламенится при температуре в 400 градусов.
- Этот металл плохо сваривается и практически не поддаётся резке.
- Затратный способ получения металла из руды обуславливает его высокую стоимость.
Малый весПродукция из титанаОднако, несмотря на имеющиеся минусы, материал и его сплавы широко распространены в различных отраслях производства.
В строительных магазинах можно найти разнообразные товары, изготовленные из этого металла. Из него производят проволоку, ленту и фольгу, прутья, трубы. Также можно приобрести титан в цельных листах.
Область примененияБлагодаря преимуществам, которым обладает титан, его используют в различных отраслях промышленности:
- военно-морское дело;
- строительство;
- медицина;
- машиностроение;
- судостроение и самолётостроение;
- химической промышленности.
Особенности применения этого металла делают его популярнее с каждым годом. Его активно используют в народном хозяйстве.
Характеристики и свойстваХарактеристики титана напрямую зависят от количества примесей, содержащихся в его составе. Физические параметры:
- Удельная прочность — 450 МПа.
- Температура плавления титана — 1668 градусов.
- Температура кипения — 3227 градусов.
- Предел прочности у сплавов — 2000 Мпа.
- Упругость титана — 110,25 Гпа.
- Твердость металла — 103 НВ.
- Предел текучести — 380 Мпа.
Структура и свойства этого металла обуславливают его низкую электропроводность. В нормальных условиях титан обладает высоким показателем устойчивости к коррозийным процессам.
МеталлФизические свойства металлаТитан представляет собой серебристо-белый металл. Он тугоплавкий, немного тяжелее алюминия. Однако при чуть большем весе прочность титана в три раза больше. Поддаётся различным способам обработки. Устойчив к воздействию влаги и кислот. Основные свойства титана были описаны выше.
Химические свойства титанаВ нормальных условиях на поверхности этого металла образуется оксидная плёнка, которая защищает его от разрушительного воздействия влаги и кислот. К химическим свойствам титана можно отнести его устойчивость к воздействию щелочей, растворам хлора. Имеет степень окисления +4. С кислородом начинает взаимодействовать при температуре в 600 градусов. Титановая стружка может самовоспламеняться при нагревании.
Титановые сплавы можно разделить на три большие группы:
- Соединения на основе химических соединений. Представители этой группы имеют жаропрочную структуру и низкую плотность. Снижение плотности напрямую влияет на снижение веса материала. Такие сплавы используют при изготовлении деталей для автомобилей, каркасов для летательных аппаратов и корпусов для кораблей.
- Жаропрочные сплавы с низкой плотностью. Это аналог соединений с никелем, но с меньшей ценой. В зависимости от химического состава меняется устойчивость сплава титана к высоким температурам.
- Конструкционные — высокопрочные соединения, которые легко поддаются обработке благодаря высокому показателю пластичности. Из этих сплавов изготавливаются детали, которые устанавливаются в оборудовании, работающим с большими нагрузками.
При производстве титановых сплавов используется официальная маркировка, которая указывает на то, с какими металлами он соединён.
Свойства и применение титановых сплавовТитановые сплавы лишены основных недостатков чистого металла. При добавлении сторонних материалов изменяются его характеристики. Ключевые свойства титановых сплавов:
- устойчивость к коррозийным процессам;
- малая плотность;
- большая удельная прочность.
Также сплавы более устойчивы к воздействию высоких температур. Благодаря повышенной защите от воздействия кислот и щелочей сплавы на основе этого материала получили популярность в химической промышленности и медицине. Их используют в строительстве, изготовлении оборудования, машин, самолётов, ракет и кораблей.
Титан и соединения на его основе распространены в различных направлениях промышленности. Этот металл обладает уникальными характеристиками, которые выделяют его на фоне других материалов. Из-за сложностей получения чистого металла цена на него достаточно высока.
Космический металл: (Все о титане) :: Книги по металлургии
Сплавы титана
Полученные в промышленных условиях слитки титана называют техническим титаном. Он имеют практически все те свойства, которыми обладает химически чистый титан. Технический титан в отличие от химически чистого содержит повышенное количество некоторых элементов-примесей. В разных странах в зависимости от технологических особенностей процесса технический титан содержит примеси (в %): железа 0,15—0,3; углерода 0,05-0,1; водорода 0,006-0,013; азота 0,04-0,07; кислорода 0,1 —0,4. Наилучшие качественные показатели по содержанию вышеперечисленных примесей имеет технический титан, выпускаемый в СССР. В целом эти примеси практически не ухудшают физические, механические, технологические свойства технического титана по сравнению с химически чистым металлом. Технический титан — это металл серебристо-серого цвета с едва заметным светло-золотистым оттенком. Он легок, почти в 2 раза легче железа, но все же тяжелее алюминия: 1 см3 титана весит 4,5 г, железа 7,8 г, а алюминия 2,7 г. Плавится технический титан почти при 1700° С, сталь — при 1500°С, алюминий — при 600° С. Он в 1,5 раза прочнее стали и в несколько раз прочнее алюминия, очень пластичный: технический титан легко прокатывать в листы и даже в очень топкую фольгу, толщиной в доли миллиметра, его можно вытягивать в прутки, проволоку, делать из него лепты, трубы. Технический титан обладает высокой прочностью, т. о. хорошо противостоит воздействию ударом и поддастся ковке, при этом он имеет высокую упругость и отличную выносливость. У технического титана довольно высокий продел текучести, он сопротивляется любым усилиям и нагрузкам, стремящимся смять, изменить форму и размеры изготовленной детали. Это его свойство выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и в 18 раз, чем у алюминия. У титана гораздо более высокая твердость, чем у алюминия, магния, меди, железа и некоторых сортов стали, однако ниже, чем у инструментальных сталей. Технический титан — металл очень большой коррозионной стойкости. Он практически не изменяется и не разрушается на воздухе, в воде, исключительно стоек при обычной температуре во многих кислотах, даже в «царской водке», во многих агрессивных средах. У титана имеется еще множество уникальных качеств. Например, стойкость к кавитации, слабые магнитные свойства, низкие электропроводность и теплопроводность и т. н. Но есть у титана и недостатки. Главный — его большая дороговизна, он в 3 раза дороже стали, в 3—5 раз дороже алюминия. титан не универсальный коррозионно-стойкий конструкционный материал, у него несколько более низкие по сравнению с лучшими сортами легированных сталей значения модулей упругости и ползучести, он может разупрочняться при высоких температурах, склонен к абразивному износу, плохо работает па резьбовых соединениях. Все эти недостатки снижают эффективность применения технического титана в чистом виде, что в общем-то характерно и для других конструкционных металлов; железа, алюминия, магния. Многие, почти все, недостатки чистого титана устраняются при легировании ого различными металлами и создании сплавов на его основе. В качестве наилучших конструкционных и коррозионно-стойких материалов сплавы титана имеют огромное преимущество. Титан, будучи весьма химически активным металлом, имеет благоприятные металлохимические свойства для образования прочных соединений — типа непрерывных и ограниченных твердых растворов ковалентных и ионных соединений. В целом насчитывается более 50 элементов, дающих с титаном твердые растворы, на основе которых можно производить титановые сплавы и их соединения. Алюминий-титановые сплавы выпускаются нескольких марок и содержат 3—8% алюминия. 0,4 — 0,5% хрома, 0,25-0,6% железа, 0,25-0,6% кремния, 0,01% бора. Все они коррозионно-стойкие, высокопрочные и жаропрочные сплавы па основе титана. С увеличением содержания алюминия и сплавах температура плавления несколько снижается, однако магнитные свойства значительно улучшаются и температура разупрочнения повышается. Ферротитан облагораживающе действует на сталь, так как он, активно поглощая кислород, является одним из лучших раскислителей стали. Ферротитан так жt активно поглощает из расплавленной стали азот, образуя нитрид титана, другие примеси, способствует равномерному распределению прочих примесей и образованию мелкозернистых структур стали. Кроме ферротитана, на основе железа и титана производятся и другие сплавы, широко используемые в черной металлургии. Феррокарботитан — железотитановый, содержащий 7—9% углерода, 74—75% железа, 10—17% титана. Ферросиликотитан — сплав, состоящий из железа (около 50%), титана (30%) и кремния (20%)- Оба эти сплава также применяются для раскисления сталей. Даже небольшие присадки, меди к титану и другим его сплавам повышают их стабильность в процессе эксплуатации, увеличивается и их жаропрочность. Кроме того 5—12% титана добавляют в медь для получения так называемого купро-титана; им пользуются, чтобы очистить расплавленную медь и бронзу от кислорода и азота. Легирование меди титаном производится только очень небольшими ого добавками, уже при 5% титана медь становится нековкой. Марганец, введенный в технический титан или в его сплавы, делает их прочнее, они сохраняют пластичность и легко обрабатываются при прокатке. Марганец — недорогой и не дефицитный металл, поэтому он широко применяется (до 1,5%) при легировании титановых сплавов, предназначенных для листовой прокатки. Богатый марганцем (70%) сплав называется мангантитаном. Оба металла являются энергетическими раскислителями. Этот сплав, как и купротитан, хорошо очищает от кислорода, азота и других примесей медь и бронзу при отливках. Технический титан и его сплавы выпускаются в виде листов, плит, полос, лент, фольги, прутков, проволоки, труб, поковок и штамповок. Эти полуфабрикаты являются исходным материалом для изготовления из титана и: его сплавов различных изделий. Для этого полуфабрикаты надо обработать ковкой, штамповкой, фасонным литьем, резанием, сваркой и т д. Как же ведет себя этот прочный, стойкой металл и его сплавы в обрабатывающих процессах? Многие полуфабрикаты используются непосредственно, например, трубы и листы. Вес они проходят предварительную термическую обработку. Затем для очистки поверхности подвергаются обработке гидропескоструйной или корундовым песком. Листовые изделия еще травит и шлифуют. Так были подготовлены титановые листы для монумента покорителям космоса на ВДНХ и для памятника Ю. А. Гагарину на площади его имени в Москве. Монументы из листового титана будут стоять вечно. Целый ряд титановых изделий изготавливать методами конки и штамповки нецелесообразно из-за технологических трудностей производства и большого количества отходов. Многие детали сложной формы гораздо выгоднее изготавливать фасонным литьем. Это весьма перспективное направление в производстве изделий из титана и его сплавов. Но на пути его развития есть ряд осложнений: расплавленный титан реагирует и с атмосферными газами, и практически со всеми известными огнеупорами, и с формовочными материалами. В связи с этим плавка титана и его сплавов производится в вакууме, а формовочный материал должен быть химически нейтральным по отношению к расплаву. Обычно формы, в которые он отливается, это графитовые кокиля, реже керамические и металлические Несмотря на трудности этой технологии, фасонные отливки сложных деталей из титана и ого сплавов получаются при строгом соблюдении технологии и очень качественными. Ведь расплавы титана и его сплавов обладают отличными литейными свойствами: у них высокая жидкотекучесть, сравнительно небольшая (всего 2—3%) линейная усадка при затвердевании, они даже в условиях затрудненной усадки не дают горячих трещин, но образуют рассеянную пористость. Литье в вакууме имеет массу преимуществ: во-первых, исключается образование окисных пленок, шлаковых включений, газовой пористости; во-вторых, повышается жидкотекучесть расплава, что влияет на заполнение всех полостей литейной формы. Кроме того, на жидкотекучесть и полноценную заполняемость полостей литейных форм существенно влияют, например, центробежные силы. Поэтому, как правило, фасонные отливки из титана производятся центробежной заливкой. Еще один важнейший аспект рассматриваемой проблемы — соединение титана. Как соединить титановые изделия (листы, ленты, детали и др.) между собой и с другими изделиями? Мы знаем три основных метода соединения металлов — это сварка, пайка и клепка их. Как же ведет себя титан во всех этих операциях? Вспомним, что титан обладает, особенно при повышенных температурах, высокой химической активностью. При взаимодействии с кислородом, азотом, водородом воздуха зона расплавленного металла насыщается этими голами, изменяется микроструктура металла в месте разогрева, может происходить загрязнение посторонними примесями, и сваркой шов будет хрупким, пористым, непрочным. Поэтому обычно методы сварки титановых изделий неприемлемы. Сварка титана требует постоянного и неукоснительного предохранения сварного шва от загрязнения примесями и газами воздуха. Типология сварки титановых изделий предусматривает ее проведение с большой скоростью только в атмосфере инертных газов с применением специальных бескислородных флюсов. Наиболее качественная Сварка производится в специальных обитаемых или необитаемых камерах, зачастую автоматическими методами. Необходим постоянный контроль состава газа, флюсов, температуры, скорости сварки, а также качества шва визуальным, рентгеновским и другими методами. Сварной титановый шов хорошего качества должен иметь золотистый оттенок без всякой побежалости. Особо крупные изделия сваривают в специальных герметично закрытых помещениях, заполненных инертным газом. Работу производит сварщик высокой квалификации, оп работает в скафандре с индивидуальной системой жизнеобеспечения. Небольшие титановые изделия можно соединять методами пайки. Здесь возникают те же проблемы предохранения разогретых спаиваемых чистой от загрязнения газами воздуха и примесями, делающими пайку ненадежной. Кроме того, обычно припои (олово, медь и другие металлы) не пригодны. Используются только серебро и алюминий высокой степени чистоты. Соединения титановых изделий с помощью клейки пли болтов тоже имеют свои особенности. Титановая клепка очень трудоемкий процесс: на нее приходите» тратить вдвое больше времени, чем на алюминиевую. Резьбовое соединение титановых изделий ненадежны, так как титановые гайки и болты при завинчивании начинают налипать и задираться, и оно может не выдержать больших напряжений. Поэтому болты и гайки из титана обязательно покрывают топким слоем серебра или синтетической пленкой из тефлона, а уж потом используют для завинчивания.
Титан магнитится к магниту или нет
Уникальные физико-технические свойства титана – лёгкость, особая прочность и высокая коррозионная стойкость сделали его одним из основных композиционных материалов, широко востребованных практически во всех областях машиностроения и во многих отраслях промышленности.
Однако всё большее применение находят и другие особенности титана, обусловленные его температурными, электрическими и магнитными свойствами.
Чистый, без примесей, титан имеет очень высокую температуру плавления (около 1660°C), по тугоплавкости он уступает только таким металлам, как молибден, тантал, вольфрам, платиноиды, ниобий, цирконий и рений. Теплопроводность титана составляет 22,065 Вт/(м.К), что примерно в 7 раз ниже, чем теплопроводность магния, в 3 – железа, в 17 – меди и алюминия. Коэффициент термического расширения у титана самый маленький по сравнению с другими металлами: при температуре 20°C он в 3 раза меньше, чем у алюминия, в 1,5 – чем у железа и в 2 – чем у меди. Поэтому такие качества титана, как твёрдость и прочность сохраняются при достаточно высоких температурах — до +450-500°C, для некоторых сплавов титана этот предел достигает +650°C. При понижении температуры титан сохраняет хорошую пластичность при некотором увеличении прочностных характеристик, и это ещё больше расширяет температурный диапазон его использования. Сейчас титановые сплавы применяются для условий от -250 до +550 °С.
При нагревании, даже незначительном, проявляется одно из главных свойств титана – его способность активно поглощать газы: водород – начиная с 50-70°С, кислород – свыше 400°С, азот, углекислый газ и окись углерода – с 600°С. Такая высокая химическая активность титана требует соблюдения особых условий при его плавке или сварке. Вместе с тем способность к газопоглощению обеспечила титану применение в электронной и радиопромышленности в качестве геттерного материала.
Наряду с тем, что титан обладает низкой теплопроводностью, он является также плохим проводником электричества. При температуре 20°C, в зависимости от содержащихся примесей, удельное электросопротивление титана колеблется в интервале 0,42-0,55 мкОм*м. Для сравнения: если принять за 100% электропроводность серебра, то медь будет обладать электропроводностью 94%, алюминий – 55%, железо и ртуть – 2%, а титан –лишь 0,3%. Но при температурах ниже -272°C титан становится сверхпроводником электричества, и это его свойство открывает новые перспективы применения титановых сплавов в областях, связанных с генерированием, передачей на большие расстояния и использованием электроэнергии.
Ещё более привлекательным для применения в электротехнике делает титан его слабая магнитная восприимчивость, характеризующаяся коэффициентом магнитной проницаемости, равным 1, 00004. То есть титан, так же как, например, алюминий, относится к парамагнитным металлам, которые не намагничиваются подобно железу или никелю в магнитном поле, но и не выталкиваются из него, как медь, серебро или золото. Это свойство титана с успехом используется как в производстве специального немагнитного оборудования, техники, приборов и машин, так и в медицине для создания имплантатов и протезов. В последнем случае особую ценность титановым конструкциям придаёт то, что их низкая электропроводность и слабая намагничиваемость не препятствуют проведению любых физиотерапевтических процедур.
Идентификация определенных металлов – точный и простой процесс только при наличии специального лабораторного оборудования, спектрометра в частности. В домашних условиях задача существенно усложняется. Особенно трудно отличать материалы, схожие по цвету и магнитным свойствам. Впрочем, даже в такой ситуации существуют проверенные на практике способы, как отличить титан от других металлов. Наибольший интерес для сравнения представляют алюминий и сталь, включая нержавейку. Тут, даже опытные мастера, регулярно работающие с металлами, и принимающие лом титана, не всегда способны четко идентифицировать, что у них конкретно в руках.
Как отличить титан от стали, алюминия
Первая пара – цветной и черный металлы. Большинство сталей обладают магнитным свойствами. Исключение составляют легированные металлы аустенитного класса. Яркий пример – нержавейка с высоким содержанием никеля. Эта марка стали, как и титан – парамагнетик. Поэтому стандартный вариант с использованием магнита тут неприемлем.
Остаются три надежных способа как определить титан в домашних условиях:
- математический;
- графический;
- абразивный;
- гальванический.
Обозначения достаточно условны, далее раскроем каждый из вариантов подробно.
Чистая математика
В этом подходе идентификация металлов производится по весу. Недостаток метода проявляется, когда в наличии только один тип металла. Определить в руках, что тяжелее уже не получится, приходится прибегнуть к математическим вычислениям. Способствует этому существенные отличия в плотности металлов:
- титан – 4.5;
- железа – 7.8;
- алюминия и дюрали – 2.7.
Для такого способа определения титана в своем хозяйстве нужно иметь точные весы
Значения параметра приведены в г/куб. см. Остается добавить, что плотность стали зависит от конкретной марки металла. Однако в абсолютных величинах эти отличия несущественны. Поэтому за плотность стали можно смело принимать значение аналогичной характеристики у железа.
Остается только уточнить объем и вес детали или куска металла. Далее, несложные вычисления, покажут, это алюминий, сталь или искомый металл — титан. Как определить объем детали сложной формы? Тут лучший вариант – закон Архимеда. Масса вытолкнутой жидкости, при погружении металлической конструкции, позволяет установить ее объем. Ситуацию упрощает плотность воды, эквивалентная 1 кг/куб.дм. Соответственно каждый грамм вытолкнутой жидкости равен одному кубическому сантиметру объема.
Конечно же — это муторный, сложный и неточный способ, но для того, чтобы определить титан дома он имеет место быть.
Так выглядит металл титан
Рисунки на стекле
Это наиболее доступный метод, как отличить титан в домашних условия, но им нужно овладеть и иметь опыт работы с титаном. Металл оставляет характерные несмываемые следы на стекле, кафеле. Достаточно провести заостренным краем металла по одному из указанных материалов. Это именно следы, а не царапины. Подобным способом часто разрисовывают окна общественного транспорта. Отмыть титановую графику на кафеле можно раствором плавиковой кислоты, связываться с ней следует предельно осторожно.
Это метод отличается простотой и эффективностью. Титан, вопреки бытующему мнению, оставляет след даже на загрязненном стекле. Так что обезжиривать его поверхность не обязательно. Напротив, любые марки стали и алюминия способны разве что едва поцарапать стекло. Это отличный метод, чтобы определить титан.
Абразивный круг
Идеальный способ как отличить титан от нержавейки для владельцев точильного станка (что, на самом деле, совсем не обязательно). Впрочем, подойдет практически любая абразивная поверхность, даже асфальт. Контакт титана с абразивом сопровождается россыпью искр насыщенно-белого цвета. Взаимодействие стали с абразивной поверхностью характеризуется желтым или красным оттенком. Искр при этом существенно меньше.
Нержавеющие марки стали – пожаробезопасны. Обработка определенных марок нержавейки происходит вообще без искр. Это свойство используется на пожароопасных производствах. Там допускаются исключительно инструменты из нержавеющей стали. Аналогичная методика применяется в вопросе как отличить титан от алюминия. Стачивание последнего на абразивном круге также происходит практически без искр.
Этот способ определения титана можно назвать самым эффективным — цвет искры действительно будет отличным от других металлов. Вообще, тест на искру является одним из самых популярных и правильных для определения и распознования разных металлов.
Видео — как отличить титан от магния и алюминия:
Гальванический подход
Другой верный способ как узнать титан, доступен прямо в гараже. Методика основана на окрашивании этого металла посредством анодирования. Простейшая конструкция «лабораторной установки» представляет автомобильный аккумулятор, плюс которого соединен с титановой пластиной. К минусу источника постоянного тока подключают металлический стержень, обмотанный ватой смоченной в кока-коле. Идеальный вариант – любой соляной раствор.
Если провести ватой по титану, металл окрасится в течение нескольких секунд. Цвет, получаемый в процессе формирования оксидной пленки, зависит от приложенного напряжения и времени обработки поверхности. Впрочем, если задача стоит как определить титан от нержавейки, то тональность окраски не важна. Главный критерий – изменение цвета.
Видео — как отличить титан от стали данным способом:
Прочие методики
Существует ряд альтернативных способов, как определить титан в руках или алюминий, например. Один из вариантов – тонкая стружка. В случае титана она легко воспламеняется и ярко горит. Напротив, алюминиевая стружка плавится. При помещении «металлических опилок» дюралюминия в щелочной раствор наблюдается активное выделение водорода.
Следующий способ как отличить металл титан от стали и алюминия – теплопроводность. Численные значения параметра Вт/(м·K) для указанных металлов составляют:
- титан – 14;
- сталь низкоуглеродистая – 55;
- нержавейка – 16;
- алюминий – 250.
Титановые изделия более теплые в руках. Конечно, подход не характеризуется высокой точностью, а для отличия титана от нержавеющей стали – вообще непригоден.
Резюме
Как видно, даже в домашних условиях, отличить титан от алюминия и стали вполне реально. Наиболее практичные варианты – искра и стекло. Для первого случая достаточно любой абразивной поверхности, даже асфальта или застывшего бетона. Яркое искрение титана успешно используют байкеры, устанавливая на обувь подковы из этого металла. След на стекле – выгоден тем, что металл не повреждается. Относительный недостаток – некоторые титановые сплавы рисунка не оставляют. Но для чистого метала это оптимальный вариант.
Любой ребенок знает, что металлы притягиваются к магнитам. Ведь они не раз вешали магнитики на металлическую дверцу холодильника или буквы с магнитиками на специальную доску. Однако, если приложить ложку к магниту, притяжения не будет. Но ведь ложка тоже металлическая, почему тогда так происходит? Итак, давайте выясним, какие металлы не магнитятся.
Научная точка зрения
Чтобы определить, какие металлы не магнитятся, нужно выяснить, как все металлы вообще могут относиться к магнитам и магнитному полю. По отношению к внесенному магнитному полю все вещества делят на диамагнетики, парамагнетики и ферромагнетики.
Каждый атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. Они непрерывно движутся, что создает магнитное поле. Магнитные поля электронов одного атома могут усиливать друг друга или уничтожать, что зависит от направления их движения. Причем скомпенсированы могут быть:
- Магнитные моменты, вызванные движением электронов относительно ядра – орбитальные.
- Магнитные моменты, вызванные вращением электронов вокруг своей оси — спиновые.
Если все магнитные моменты равны нулю, вещество относят к диамагнетикам. Если скомпенсированы только спиновые моменты — к парамагнетикам. Если поля не скомпенсированы – к ферромагнетикам.
Парамагнетики и ферромагнетики
Рассмотрим вариант, когда у каждого атома вещества есть свое магнитное поле. Эти поля разнонаправлены и компенсируют друг друга. Если же рядом с таким веществом положить магнит, то поля сориентируются в одном направлении. У вещества появится магнитное поле, положительный и отрицательный полюс. Тогда вещество притянется к магниту и само может намагнититься, то есть будет притягивать другие металлические предметы. Так, например, можно намагнитить дома стальные скрепки. У каждой появится отрицательный и положительный полюс и можно будет даже подвесить целую цепочку из скрепок на магнит. Такие вещества называют парамагнитными.
Ферромагнетики — небольшая группа веществ, которые притягиваются к магнитам и легко намагничиваются даже в слабом поле.
Диамагнетики
У диамагнетиков магнитные поля внутри каждого атома скомпенсированы. В этом случае при внесении вещества в магнитное поле к собственному движению электронов добавится движение электронов под действием поля. Это движение электронов вызовет дополнительный ток, магнитное поле которого будет направлено против внешнего поля. Поэтому диамагнетик будет слабо отталкиваться от расположенного рядом магнита.
Итак, если подойти с научной точки зрения к вопросу, какие металлы не магнитятся, ответ будет – диамагнитные.
Распределение парамагнетиков и диамагнетиков в периодической системе элементов Менделеева
Магнитные свойства простых веществ периодично изменяются с увеличением порядкового номера элемента.
Вещества, не притягивающиеся к магнитам (диамагнетики), располагаются преимущественно в коротких периодах – 1, 2, 3. Какие металлы не магнитятся? Это литий и бериллий, а натрий, магний и алюминий уже относят к парамагнетикам.
Вещества, притягивающиеся к магнитам (парамагнетики), расположены преимущественно в длинных периодах периодической системы Менделеева – 4, 5, 6, 7.
Однако последние 8 элементов в каждом длинном периоде также являются диамагнетиками.
Кроме того, выделяют три элемента – углерод, кислород и олово, магнитные свойства которых различны у разных аллотропных модификаций.
К тому же называют еще 25 химических элементов, магнитные свойства которых установить не удалось вследствие их радиоактивности и быстрого распада или сложности синтеза.
Магнитные свойства лантаноидов и актиноидов (все они являются металлами) меняются незакономерно. Среди них есть и пара- и диамагнетики.
Выделяют особые магнитоупорядоченные вещества – хром, марганец, железо, кобальт, никель, свойства которых изменяются незакономерно.
Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9. Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий.
Металлы, притягивающиеся только к очень сильным магнитам (парамагнетики): алюминий, медь, платина, уран.
Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам.
Итак, какие металлы не магнитятся к магниту:
- парамагнетики: алюминий, платина, хром, магний, вольфрам;
- диамагнетики: медь, золото, серебро, цинк, ртуть, кадмий, цирконий.
В целом можно сказать, что черные металлы притягиваются к магниту, цветные – не притягиваются.
Если говорить о сплавах, то сплавы железа магнитятся. К ним относят в первую очередь сталь и чугун. К магниту могут притянуться и драгоценные монеты, поскольку они изготовлены не из чистого цветного металла, а из сплава, который может содержать небольшое количество ферромагнетика. А вот украшения из чистого цветного металла к магниту не притянутся.
Какие металлы не ржавеют и не магнитятся? Это обычная пищевая нержавейка, золотые и серебряные изделия.
Где используют титан?
В судостроении
Широко используются титановые сплавы в морском судостроении. Исключительная стойкость титана и его сплавов при воздействии морской воды делает их незаменимыми материалами для обшивки судов, производства деталей насосов, трубопроводов и для других целей морского судостроения.
Главные свойства титана, которые открывают ему большие перспективы в морском судостроении, ― это малая плотность, феноменальная коррозионная стойкость металла в морской воде, стойкость к эрозии и кавитации.
Малая плотность позволяет снижать массу корабля, что повышает его маневренность и дальность хода. Обшитые листами титана корпуса судов никогда не потребуют окраски, так как они десятилетиями не ржавеют и не разрушаются в морской воде. Эрозионная и навигационная стойкость позволят не бояться больших скоростей в морской воде: взвешенные в ней мириады песчинок не повредят титановым рулям, винтам, корпусу. Из титановых сплавов можно изготовлять валы, распорки, опоры, части якоря, выхлопные глушители подлодок. Глушители из титана значительно экономичнее, долговечнее, прочнее медно-никелевых. На подводных лодках титан используется для изготовления различных деталей палубной арматуры, антенн, приборов, рукояток, постоянно погруженных в морскую воду. Они способны служить вечно, не требуя покрасок и ремонтов. Из титана можно сделать и корпуса подводных лодок сверхглубокого погружения (до 6 км).
Кроме того, слабые магнитные свойства титана и его сплавов позволяют применять их для создания самых разнообразных навигационных приборов, устранять девиацию, т. е. влияние металлических частей корабля на навигационные приборы, уменьшать опасность подрыва на магнитных минах. Не исключена возможность создания из титановых сплавов так называемых немагнитных кораблей, крайне необходимых для геолого-геофизических исследований в открытых океанах.
Наибольшие перспективы в судостроении имеет применение титана в производстве конденсаторных труб, турбинных двигателей и паровых котлов. Увеличение размеров кораблей требует резкого повышения мощности двигателей и размеров котлов. Загрязнение последних в процессе эксплуатации приводит к замедлению скорости хода или даже к полной остановке судна. Применение конденсаторов из титана практически снимает проблему очистки котлов. Так, на одном из японских танкеров водоизмещением 164 тыс. тонн титановый конденсатор после эффективной эксплуатации в течение почти 5 тыс. часов не обнаружил ни следов коррозии и загрязнения, ни изменений в микроструктуре металла и его механических свойств.
Серьезно обсуждаются проблемы строительства из титана обитаемых батискафов и батисфер для исследования морских глубин. Американские специалисты создали обитаемый батискаф «Алвин» с титановой оболочкой, который может исследовать глубины океана до 4 километров. Действительно, титан с его высочайшей коррозионной стойкостью и способностью выдерживать огромные давления и нагрузки ― наилучший материал для создания глубоководных аппаратов. Не исключено, что в будущем титан будет широко использоваться для строительства обитаемых экспериментальных жилищ под водой, где станут подолгу жить исследователи океанских и морских глубин, разведчики подводных богатств.
Продолжение статьи читайте в февральском номере журнала «Наука и техника» за 2020 год. Доступна как печатная, так и электронная версии журнала. Оформить подписку на журнал можно здесь.
В магазине на сайте также можно купить магниты, календари, постеры с авиацией, кораблями, сухопутной техникой
Титан — ГК Металлург
Одним из самых распространенных элементов, который находится в земле, можно назвать титан. Согласно результатам проведенных исследований, он занимает 4-е место по степени распространенности, уступая лидирующие позиции алюминию, железу и магнию. Несмотря на столь большое распространение, титан стал использоваться в промышленности лишь в 20 веке. Титановые сплавы во многом повлияли на развитие ракетостроения и авиации, что связано с сочетанием малой плотности с высокой удельной прочностью, а также коррозионной стойкостью. Рассмотрим все особенности данного материала подробнее.
Общая характеристика титана и его сплавов
Именно основные механические свойства титановых сплавов определяют их большое распространение. Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:
- Высокая коррозионная стойкость. Недостатком большинства металлов можно назвать то, что при воздействии высокой влажности на поверхности образуется коррозия, которая не только ухудшает внешний вид материала, но и снижает его основные эксплуатационные качества. Титан менее восприимчив к воздействию влажности, чем железо.
- Хладостойкость. Слишком низкая температура становится причиной того, что механические свойства титановых сплавов существенно снижаются. Часто можно встретить ситуацию, когда эксплуатация при отрицательных температурах становится причиной существенного повышения хрупкости. Титан довольно часто применяется при изготовлении космических кораблей.
- Титан и титановые сплавы имеют относительно низкую плотность, что существенно снижает вес. Легкие металлы получили широкое применение в самых различных отраслях промышленности, к примеру, в авиастроении, строительстве небоскребов и так далее.
- Высокая удельная прочность и низкая плотность – характеристики, которые довольно редко сочетаются. Однако именно за счет подобного сочетания титановые сплавы сегодня получили самое широкое распространение.
- Технологичность при обработке давлением определяет то, что сплав применяется часто в качестве заготовки при прессовании или другом виде обработки.
- Отсутствие реакции на воздействие магнитного поля также назовем причиной, по которой рассматриваемые сплавы получили широкое применение. Часто можно встретить ситуацию, когда проводится производство конструкций, при работе которых образуется магнитное поле. Применение титана позволяет исключить вероятность возникновения связи.
Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.
Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки.
Виды титановых сплавов
Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:
- Высокопрочные и конструкционные – прочные титановые сплавы, которые обладают также достаточно высокой пластичностью. За счет этого они могут применяться при изготовлении деталей, на которые оказывается переменная нагрузка.
- Жаропрочные с низкой плотностью применяются как более дешевая альтернатива жаропрочным никелевым сплавам с учетом определенного температурного интервала. Прочность подобного титанового сплава может варьироваться в достаточно большом диапазоне, что зависит от конкретного химического состава.
- Титановые сплавы на основе химического соединения представляют жаропрочную структуру с низкой плотностью. За счет существенного снижения плотности вес также снижается, а жаропрочность позволяет использовать материал при изготовлении летательных аппаратов. Кроме этого с подобной маркой связывают также высокую пластичность.
Разновидности титановых сплавов
Марка | Ti | Аl | V | Мо | Zr | Si | Fe | O | N | C | Ост |
---|---|---|---|---|---|---|---|---|---|---|---|
ВТ1-00 | осн. | 0,08 | 0,15 | 0,1 | 0,04 | 0,05 | 0,1 | ||||
ВТ1-0 | осн. | 0,1 | 0,3 | 0,2 | 0 | 0,1 | 0,3 | ||||
ВТ1-2 | осн. | 0,15 | 1,5 | 0,3 | 0,15 | 0,1 | 0,3 | ||||
ВТЗ-1 | осн. | 5,5-7,0 | 2,0-3,0 | 0,5 | 0,15-0,40 | 0,2-0,7 | 0,15 | 0,05 | 0,1 | 0,3 | |
ОТ4 | осн. | 3,5-5. 0 | 0,3 | 0,12 | 0,3 | 0,15 | 0,05 | 0,1 | 0,3 | ||
ОТ4-0 | осн. | 0,4-1,4 | 0,3 | 0,12 | 0,3 | 0,15 | 0,05 | 0,1 | 0,3 | ||
ОТ4-1 | осн. | 1,5-2,5 | 0,3 | 0,12 | 0,3 | 0,15 | 0,05 | 0,1 | 0,3 | ||
ВТ5 | осн. | 4,5-6,2 | 1,2 | 0,8 | 0,3 | 0,12 | 0,3 | 0,2 | 0,05 | 0,1 | 0,3 |
ВТ5-1 | осн. | 4.3-6,0 | 1 | 0,3 | 0,12 | 0,3 | 0,15 | 0,05 | 0,1 | 0,3 | |
ВТ6 | осн. | 5,3-6,8 | 3,5-5,3 | 0,3 | 0,1 | 0,6 | 0,2 | 0,05 | 0,1 | 0,3 | |
ВТ6С | осн. | 5,3-6,5 | 3,5-4,5 | 0,3 | 0,15 | 0,25 | 0,15 | 0,04 | 0,1 | 0,3 | |
ВТ8 | осн. | 5,8-7,0 | 2,8-3,8 | 0,5 | 0,20-0,40 | 0,3 | 0,15 | 0,05 | 0,1 | 0,3 | |
ВТ9 | осн. | 5,8-7,0 | 2,8-3,8 | 1,0-2,0 | 0,20-0,35 | 0,25 | 0,15 | 0,05 | 0,1 | 0,3 | |
ВТ14 | осн. | 3,5-6,3 | 0,9-1,9 | 2,5-3,8 | 0 | 0,2 | 0,3 | 0,2 | 0,1 | 0,1 | 0,3 |
ВТ15 | осн. | 2,3-3,6 | 6,8-8 | 0,15 | 0,3 | 0,12 | 0,05 | 0,1 | 0,3 | ||
ВТ16 | осн. | 1,8-3,8 | 4-5 | 4,5-5,5 | 0,3 | 0,15 | 0,25 | 0,15 | 0,05 | 0,1 | 0,3 |
ВТ18 | осн. | 7,2-8,2 | 0,2-1 | 10-12 | 0,05-0,18 | 0,15 | 0,14 | 0,05 | 0,1 | 0,3 | |
ВТ20 | осн. | 5,5-7,0 | 0,8-2,5 | 0,5-2,0 | 1,5-2,5 | 0,15 | 0,25 | 0,15 | 0,05 | 0,1 | 0,3 |
ВТ22 | осн. | 4,4-5,7 | 4,0-5,5 | 4,0-5,5 | 0,3 | 0,15 | 0,5-1,5 | 0,18 | 0,05 | 0,1 | 0,3 |
ВТ23 | осн. | 4-6,3 | 4-5 | 1,5-2,5 | 0,3 | 0,15 | 0,4-0,1 | 0,15 | 0,05 | 0,1 | 0,3 |
ПТ3В | осн. | 3,5-5,0 | 1,2-2,5 | 0,3 | 0,12 | 0,25 | 0,15 | 0,04 | 0,1 | 0,3 | |
ПТ-1М | осн. | 0,2-0,7 | 0,3 | 0,1 | 0,2 | 0,12 | 0,04 | 0,07 | 0,3 | ||
ПТ-7М | осн. | 1,8-2,5 | 2,0-3,0 | 0,12 | 0,25 | 0,15 | 0,04 | 0,1 | 0,3 |
Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.
Рассматривая наиболее распространенные марки титановых сплавов, следует обратить внимание ВТ1-00 и ВТ1-0. Они относятся к классу технических титанов. В состав данного титанового сплава входит достаточно большое количество различных примесей, которые определяют снижение прочности. Однако за счет снижения прочности существенно повышается пластичность. Высокая технологическая пластичность определяет то, что технический титан можно получить даже при производстве фольги.
Очень часто рассматриваемый состав сплава подвергается нагартовке. За счет этого повышается прочность, но существенно снижается пластичность. Многие специалисты считают, что рассматриваемый метод обработки нельзя назвать лучшим, так как он не оказывает комплексного благоприятного воздействия на основные свойства материала.
Сплав ВТ5 довольно распространен, характеризуется применением в качестве легирующего элемента исключительно алюминия. Важно отметить, что именно алюминий считается самым распространенным легирующим элементом в титановых сплавах. Это связано с нижеприведенными моментами:
- Применение алюминия позволяет существенно повысить модули упругости.
- Алюминий также позволяет повысить значение жаропрочности.
- Подобный металл один из самых распространенных в своем роде, за счет чего существенно снижается стоимость получаемого материала.
- Снижается показатель водородной хрупкости.
- Плотность алюминия ниже плотности титана, за счет чего введение рассматриваемого легирующего вещества позволяет существенно повысить удельную прочность.
В горячем состоянии ВТ5 хорошо куется, прокатывается и штампуется. Именно поэтому его довольно часто применяют для получения поковки, проката или штамповки. Подобная структура может выдержать воздействие не более 400 градусов Цельсия.
Титановый сплав ВТ22 может иметь самую различную структуру, что зависит от химического состава. К эксплуатационным особенностям материала можно отнести следующие моменты:
- Высокая технологическая пластичность при обработке давлением в горячем состоянии.
- Применяется для изготовления прутков, труб, плиты, штамповок, профиля.
- Для сваривания могут использоваться все наиболее распространенные методы.
- Важным моментом является то, что после завершения процесса сварки рекомендуется проводить отжиг, за счет чего существенно повышаются механические свойства получаемого шва.
Существенно повысить эксплуатационные качества титанового сплава ВТ22 можно путем применения сложной технологии отжига. Она предусматривает нагрев до высокой температуры и выдержки в течение нескольких часов, после чего проводится поэтапное охлаждение в печи также с выдержкой в течение длительного периода. После качественного проведения отжига сплав подойдет для изготовления высоконагруженных деталей и конструкций, которые могут нагреваться до температуры более 350 градусов Цельсия. Примером можно назвать элементы фюзеляжа, крыла, детали системы управления или крепления.
com/embed/1iaYWQqWPLs» frameborder=»0″ allow=»autoplay; encrypted-media» allowfullscreen=»»/>
Титановый сплав ВТ6 сегодня получил самое широкое распространение за рубежом. Назначение подобного титанового сплава заключается в изготовлении баллонов, которые могут работать под большим давлением. Кроме этого, согласно результатам проведенных исследований, в 50% случаев в авиакосмической промышленности применяется титановый сплав, который по своим эксплуатационным качествам и составу соответствует ВТ6. Стандарт ГОСТ сегодня практически не применяется за рубежом для обозначения титановых и многих других сплавов, что следует учитывать. Для обозначения применяется своя уникальная маркировка.
ВТ6 обладает исключительными эксплуатационными качествами по причине того, что в состав добавляется также ванадий. Этот легирующий элемент характеризуется тем, что повышает не только прочность, но и пластичность.
Данный сплав хорошо деформируется в горячем состоянии, что также можно назвать положительным качеством. При его применении получают трубы, различные профили, плиты, листы, штамповки и многие другие заготовки. Для сваривания можно применять все современные методы, что также существенно расширяет область применения рассматриваемого титанового сплава. Для повышения эксплуатационных качеств также проводится термическая обработка, к примеру, отжиг или закалка. На протяжении длительного времени отжиг проводился при температуре не выше 800 градусов Цельсия, однако результаты проведенных исследований указывают на то, что есть смысл в повышении показателя до 950 градусов Цельсия. Двойной отжиг зачастую проводится для повышения сопротивления коррозионному воздействию.
Также большое распространение получил сплав ВТ8. В сравнении с предыдущим он обладает более высокими прочностными и жаропрочными качествами. Достигнуть уникальных эксплуатационных качеств смогли за счет добавления в состав большого количества алюминия и кремния. Стоит учитывать, что максимальная температура, при которой может эксплуатироваться данный титановый сплав около 480 градусов Цельсия. Разновидностью этого состава можно назвать ВТ8-1. Его основными эксплуатационными качествами назовем нижеприведенные моменты:
- Высокая термическая стабильность.
- Низкая вероятность образования трещин в структуре за счет обеспечения прочных связей.
- Технологичность при проведении различных процедур обработки, к примеру, холодной штамповки.
- Высокая пластичность вместе с повышенной прочностью.
Для существенно повышения эксплуатационных качеств довольно часто проводится двойной изотермический отжиг. В большинстве случаев данный титановый сплав применяется при производстве поковок, прудков, различных плит, штамповок и других заготовок. Однако стоит учитывать, что особенности состава не позволяют проводить сварочные работы.
Применение титановых сплавов
Рассматривая области применения титановых сплавов отметим, что большая часть разновидностей применяется в авиационной и ракетостроительной сферах, а также в сфере изготовления морских судов. Для изготовления деталей авиадвигателей другие металлы не подходят по причине того, что при нагреве до относительно невысоких температур начинают плавиться, за счет чего происходит деформация конструкции. Также увеличения веса элементов становится причиной потери КПД.
Применим материал при производстве:
- Трубопроводов, используемых для подачи различных веществ.
- Запорной арматуры.
- Клапанов и других подобных изделий, которые применяются в агрессивных химических средах.
- В авиастроении сплав применяется для получения обшивки, различных креплений, деталей шасси, силовых наборов и других агрегатов. Как показывают результаты проводимых исследований, внедрение подобного материала снижает вес примерно на 10-25%.
- Еще одной сферой применения является ракетостроение. Кратковременная работа двигателя, движение на большой скорости и вхождение в плотные слои становится причиной, по которой конструкция переживает серьезные нагрузки, способные выдержать не все материалы.
- В химической промышленности титановый сплав применяется по причине того, что он не реагирует на воздействие различных веществ.
- В судостроении титан хорош тем, что не реагирует на воздействие соленой воды.
В целом можно сказать, что область применения титановых сплавов весьма обширна. При этом проводится легирование, за счет чего существенно повышаются основные эксплуатационные качества материала.
Термообработка титановых сплавов
Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.
Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.
Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.
— магнитный титановый сплав | Rex Metals Aerospace
Титан — один из материалов, которые хорошо подходят для широкого спектра отраслей промышленности. От аэрокосмической до медицины, все они используют титан как отличный инструмент, который помогает удовлетворить различные потребности. Но вы должны задаться вопросом, является ли титан или титановый сплав магнитным?
Согласно многочисленным исследованиям, кажется, что титан действительно обладает магнитными свойствами, однако они очень слабые, особенно если сравнивать их с ферромагнитными материалами.Когда титан сталкивается с приложенным извне магнитным полем, он будет иметь очень слабое магнитное присутствие, однако это можно увидеть, если вы внимательно изучите материал.
Также следует иметь в виду, что титан также обладает эффектом Ленца, однако он гораздо менее распространен по сравнению с другими материалами. Если вы решите провести магнит над титаном, это не так уж много, а во многих случаях он даже не будет двигаться.
То же самое можно встретить, если уронить на титан очень сильный магнит.Он будет падать медленно, главным образом потому, что у титана есть некоторые очень слабые магнитные свойства, которые легко могут быть неверно истолкованы или неверно прочитаны.
Это поможет вам понять, почему во многих отраслях промышленности в первую очередь используют титан, потому что, даже если у него очень хороший набор свойств, он не обладает мощным магнетизмом. Фактически, аэрокосмическая промышленность сосредотачивается на использовании титана только по этой причине, поскольку он обеспечивает необходимую долговечность и устойчивость, не вызывая при этом каких-либо серьезных недостатков.
Магнитны ли титановые сплавы?
Как и следовало ожидать, некоторые титановые сплавы являются магнитными. Все зависит от того, какие материалы интегрированы в этот сплав. Если в состав сплава входят кобальт, железо или никель, вы определенно можете ожидать, что титановый сплав, созданный с этими соединениями, будет иметь магнитные свойства. Поскольку титан изначально уже обладает некоторыми магнитными свойствами, ему легко улучшить эти свойства, когда он смешивается с магнитным металлом.
Однако это не сразу означает, что все титановые сплавы будут магнитными.На самом деле правда далека от этого. Здесь нужно отметить, что если в сплаве нет материалов с магнитными свойствами, то титан не будет влиять на весь результат своими слабыми магнитными свойствами. Вместо этого вы получите очень хорошее сочетание материалов, сплав, который можно использовать во многих ситуациях, но который не обладает какими-либо основными магнитными свойствами.
В заключение, титановые сплавы могут быть магнитными, но есть вероятность, что они не могут быть магнитными. Результат зависит от того, что входит в состав сплава, и исходя из этого вы сможете получить ответ.Одно можно сказать наверняка: титановые сплавы будут магнитными только в том случае, если титан сочетается с такими материалами, как никель, кобальт, железо или другими материалами, обладающими сильными магнитными свойствами. В противном случае титан не привнесет в сплав свои слабые магнитные свойства.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Действительно ли титановые имплантаты безопасны для магнитно-резонансной томографии?
Arch Plast Surg. 2019 Янв; 46 (1): 96–97.
Отделение пластической и реконструктивной хирургии, Медицинский колледж Университета Йоннам, Тэгу, Корея
Для корреспонденции: Юн-Ха Ким, Отделение пластической и реконструктивной хирургии, Медицинский колледж Университета Йоннам, 170 Хёнчунг-ро, Намгу, Тэгу 42415, Корея Тел. : + 82-53-620-3481, факс: + 82-53-626-0705, электронная почта: rk.ca.uny@noymikПоступило 16.12.2018; Пересмотрено 28 декабря 2018 г .; Принято 28 декабря 2018 г.
Авторские права © Корейское общество пластических и реконструктивных хирургов, 2019 Это статья в открытом доступе, распространяемая в соответствии с условиями некоммерческой лицензии Creative Commons Attribution (http://creativecommons.org/licenses/by-nc/ 4.0 /), который разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы. Эта статья цитируется в других статьях PMC.Введение
Магнитно-резонансная томография (МРТ) широко используется для диагностики, определения стадии и последующего наблюдения за заболеваниями. МРТ — очень полезный диагностический инструмент для визуализации опорно-двигательного аппарата и сосудов головного мозга, поскольку он имеет отличный контраст мягких тканей и считается более безопасным, чем другие методы, поскольку не подвергает тело воздействию радиации [1].
Однако МРТ не лишена рисков. Присутствие металлического имплантата в теле пациента во время МРТ может быть опасным из-за чрезмерного взаимодействия магнитного поля.
Развитие медицины привело к использованию в нашем организме различных имплантатов, таких как зубные и ортопедические имплантаты [2]. В области черепно-лицевой хирургии использование титановых пластин и винтов в процедурах открытой репозиции и внутренней фиксации резко возросло с конца 20 века, и теперь титан считается материалом для имплантатов. Титановые пластины часто используются для краниопластики, реконструкции лицевых костей и реконструкции орбитальной кости, поскольку они дают отличные результаты, не создавая серьезных проблем с точки зрения биобезопасности [3].
Однако некоторые врачи задаются вопросом, действительно ли титановые имплантаты безопасны для МРТ. Чем больше пациентов пожилого возраста, тем выше вероятность проведения МРТ головного мозга в связи с цереброваскулярным заболеванием. Это привело к вопросу о том, допустимо ли широкое использование титановых имплантатов в черепно-лицевой области, учитывая вероятность того, что пациенты будут проходить МРТ головного мозга в будущем.
В этой статье мы представляем механизм МРТ и его связь с металлами, особенно с титаном, и рассматриваем опасения, которые были высказаны в отношении титановых материалов в МРТ.
Физические принципы МРТ
Во время МРТ человека помещают в цилиндрический аппарат и на него наматывают проволоку. Когда через этот провод проходит электричество, через цилиндр проходит магнитное поле. В МРТ к нашему телу прикладывается магнитное поле, и устройство визуализации воспринимает сигнал, создаваемый в ответ на магнитное поле, и отображает его [4].
Физические принципы МРТ можно разделить на три этапа: намагничивание, резонанс и релаксация.Намагниченность относится к электромагнитному свойству с той же направленностью, что и магнитный момент в атомном ядре. Другими словами, ядро можно рассматривать как чрезвычайно маленький магнит. МРТ использует атомы водорода, которых много в человеческом теле. Поскольку водород имеет только один протон в ядре, его чистое магнитное поле направлено в одном направлении, без компенсации. Поскольку направление магнитного момента атомов водорода является случайным, когда магнитное поле не применяется в нормальном человеческом теле, тело не имеет общих магнитных свойств, когда эти моменты суммируются.Однако при приложении внешнего магнитного поля возникает резонанс. Магнитные моменты атомов водорода, которые раньше имели разные направления, выравниваются в одном направлении. Это явление известно как резонанс. В МРТ интенсивность магнитного поля варьируется, чтобы избежать постоянной силы. Когда внешнее магнитное поле исчезает, атом возвращается в исходное состояние. Высвобождение энергии, когда атом возвращается в исходное состояние, называется релаксацией. Интенсивность магнитного поля изменяется во время МРТ, и последовательность этих изменений многократно вызывает релаксацию.Визуализация энергетических сигналов, генерируемых релаксацией атомов водорода через датчик, приводит к МРТ-изображению, которое мы можем видеть [4].
Связь между МРТ и металлами
Здравый смысл подсказывает, что мы не должны приближать металл к аппарату МРТ. Хотя термин «магнетизм» часто используется для обозначения магнитных свойств металлов, на самом деле все материалы обладают магнетизмом, который можно разделить на ферромагнетизм, диамагнетизм и парамагнетизм [5].
Ферромагнитные вещества — это материалы, которые намагничиваются даже при отсутствии внешнего магнитного поля.Когда ферромагнитное вещество приближается к аппарату МРТ, оно присоединяется к аппарату МРТ из-за своего сильного магнитного поля или перемещается в другое место. Типичные ферромагнитные материалы включают железо, кобальт и никель. Диамагнитные вещества намагничиваются в направлении, противоположном магнитному полю, когда их помещают в магнитное поле, хотя диамагнетизм исчезает, когда магнитное поле исчезает. Типичные материалы включают медь, стекло и пластик. Парамагнитные вещества слабо намагничиваются внешним магнитным полем и теряют свой магнетизм при снятии внешнего магнитного поля.К этой категории относится большинство веществ, в том числе титан.
Опасения по поводу МРТ у пациентов с титановыми имплантатами
За последние 3 десятилетия хирургические титановые имплантаты были протестированы в многочисленных исследованиях на безопасность, совместимость и диагностические артефакты изображений. Почти все исследования пришли к выводу, что большинство неферромагнитных имплантатов безопасны для пациентов на МРТ [6-9].
Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США ежегодно получает около 300 отчетов о побочных эффектах при МРТ [10].Чаще всего сообщается о контактных ожогах из-за контакта кожи с кожей или внешних металлических предметов, таких как отведения электрокардиограммы, пульсоксиметры и медицинские пластыри. Следующие наиболее часто регистрируемые события включают повреждение, вызванное попаданием снаряда объектами, движущимися под действием магнитного поля, травмы пальцев, вызванные столом пациента, падение пациента, потерю слуха и шум в ушах, все из которых не связаны с наличием хирургических имплантатов. .
Поскольку в устройствах МРТ используются сильные магниты, металлические имплантаты представляют особый риск потенциальной миграции имплантатов и радиочастотного (RF) нагрева имплантатов, который может вызвать повреждение окружающей ткани [11].
Исследования показали, что имплантаты, прочно прикрепленные к кости, не подвержены смещению, вызванному МРТ [1,12]. Учитывая немногочисленность недавних исследований, МРТ не рекомендуется в ближайшем послеоперационном периоде у пациентов с пассивными имплантатами, такими как спирали, фильтры и стенты [6]. Радиочастотный нагрев теоретически возможен, поскольку вихревые токи в имплантатах параллельны статическому магнитному полю сканера. Однако все когортные исследования показали, что это изменение температуры незначительно, что указывает на необоснованность опасений по поводу повреждения тканей от радиочастотного нагрева.
Металлические имплантаты могут привести к появлению артефактов изображения, что приведет к неправильной интерпретации результатов. Достижения в области технологий могут минимизировать искажение изображения за счет изменения последовательностей импульсов магнитного резонанса и оптимизации параметров сканирования. Решая, следует ли пациентам проходить МРТ, врачи должны учитывать как преимущества визуализации, так и возможность искажения изображения из-за имплантатов.
Титан — парамагнитный материал, на который не действует магнитное поле МРТ. Риск осложнений, связанных с имплантацией, очень низок, и МРТ можно безопасно использовать у пациентов с имплантатами.Однако титановые пластины, используемые в черепно-лицевой области, сделаны из сплавов. Необходимы более точные исследования, потому что эффекты МРТ зависят от пропорции составляющих сплава.
Сноски
YHK, главный редактор Archives of Plastic Surgery , является соответствующим автором этой статьи. Однако он не сыграл никакой роли в редакционной оценке этой статьи или решении ее опубликовать. За исключением этого, о потенциальном конфликте интересов, относящемся к этой статье, не сообщалось.
Ссылки
1. Салливан П.К., Смит Дж. Ф., Роззел А. А.. Краниоорбитальная реконструкция: безопасность и качество изображения металлических имплантатов при КТ и МРТ. Plast Reconstr Surg. 1994; 94: 589–96. [PubMed] [Google Scholar] 3. Мошер З.А., Сойер-младший, Келли Д. М. Безопасность МРТ с ортопедическими имплантатами. Orthop Clin North Am. 2018; 49: 455–63. [PubMed] [Google Scholar] 4. Корейское общество магнитно-резонансной томографии. Учебник магнитно-резонансного изображения. Сеул: Издательство Chung-Ku Publishing co .; 2011. [Google Scholar] 6.Шеллок Ф.Г. Обновление безопасности магнитного резонанса 2002: имплантаты и устройства. J. Магнитно-резонансная томография. 2002. 16: 485–96. [PubMed] [Google Scholar] 7. Шеллок ФГ. Информация о безопасности 3-Tesla MR для имплантатов и устройств [Интернет] MRISafety.com; c2018 [цитируется 12 декабря 2018 г.]. Доступно по адресу http: //www.mrisafety.com 8. Шеллок ФГ. Биомедицинские имплантаты и устройства: оценка взаимодействия магнитного поля с системой МРТ 3,0 Тесла. J. Магнитно-резонансная томография 2002; 16: 721–32. [PubMed] [Google Scholar] 9. Цай Л.Л., Грант А.К., Мортеле К.Дж. и др.Практическое руководство по безопасности МРТ: что нужно знать радиологам. Рентгенография. 2015; 35: 1722–37. [PubMed] [Google Scholar] 11. Дэвис П.Л., Крукс Л., Аракава М. и др. Потенциальные опасности при ЯМР-визуализации: тепловое воздействие изменяющихся магнитных полей и радиочастотных полей на небольшие металлические имплантаты. AJR Am J Roentgenol. 1981; 137: 857–60. [PubMed] [Google Scholar] 12. Рупп Р., Эбрахейм Н.А., Саволайн Э.Р. и др. Оценка позвоночника с помощью магнитно-резонансной томографии с использованием металлических имплантатов: общая безопасность и превосходная визуализация с использованием титана.Позвоночник (Phila Pa 1976) 1993; 18: 379–85. [PubMed] [Google Scholar]Ученые комбинируют титан и золото, чтобы создать странствующий антиферромагнетик — ScienceDaily
Титан и золото обычно немагнитны и не могут быть магнитами — если вы не объедините их просто так.
Ученые из Университета Райса сделали это и открыли первое в своем роде: странствующий антиферромагнитный металл — TiAu — сделанный из немагнитных составляющих элементов.
Исследование лаборатории физика Райс Эмилии Моросан уже приводилось в качестве учебного примера того, как магнетизм возникает в металлах.Хотя использование этого конкретного магнита еще предстоит определить, открытие Райса может улучшить научное понимание магнетизма.
Статья об исследовании в открытом доступе появится на этой неделе в журнале Nature Communications .
Это не тот магнит, который можно прикрепить к холодильнику. Магнитный порядок появляется в TiAu только тогда, когда металл охлаждается до 36 кельвинов, примерно минус 395 градусов по Фаренгейту.
«Намагничивание — это функция температуры», — сказала ведущий автор Этери Сванидзе.«Температура упорядочения магнита проявляется как аномалия на плавной кривой, которую мы видим при таких измерениях намагниченности». Для обычных магнитов эта температура обычно составляет сотни градусов по Фаренгейту, что намного выше, чем на любой кухне. Но шкала энергии и температуры в нетрадиционных магнитах, как и в тех немногих, которые не имеют магнитных элементов, резко сокращается.
Сванидзе сказал, что магниты улучшат исследования в других важных областях физики, таких как фазовые переходы (например, твердое тело-жидкость или жидкость-газ), которые происходят при абсолютном нуле, называемые квантовыми фазовыми переходами.
TiAu — лишь третий известный странствующий магнитный металл, не содержащий магнитных элементов. Два других, оба ферромагнетика, которые активируют свой магнитный порядок при температурах даже ниже, чем TiAu, были открыты полвека назад. Отчасти причина такого большого разрыва в том, что TiAu сложно добыть.
«Когда мы начали поиски, мы выяснили, почему прошло 50 лет без каких-либо дополнительных открытий», — сказал Моросан. «Большинство других возможных кандидатов в той или иной степени были проблематичными.Их было сложно изготовить, они были химически нестабильными, токсичными или требовали высокой температуры, недоступной в лаборатории ».
«Нам пришлось отказаться от многих соединений-кандидатов», — сказал Сванидзе, который работал над проектом шесть лет в качестве аспиранта Райс.
Но расчеты электронной структуры показали, что смесь титана и золота 1: 1 может обладать искомыми свойствами. «Это не новый материал», — сказал Сванидзе. «Мы обнаружили его магнитные свойства, и именно здесь на помощь приходит интересная физика.«
Материалы обычно становятся магнитными при воздействии поля, которое выравнивает магнитные моменты его атомов. Думайте о каждом атоме или ионе как о крошечном автономном магните, который может выравниваться с соседними магнитными ионами, как стрелка компаса.
Магнитный момент материала может быть локальным (привязанным к определенному атому) или странствующим (не связанным с отдельным атомом). Странствующие странники могут распространять свое влияние на более чем один атом, облегчая связь между их «верхним» или «нижним» состояниями спина.Они также учитывают такие удобные вещи, как электропроводность металлов.
Атомные моменты в ферромагнетиках с локальным моментом, то есть в обычных магнитных материалах, выравнивают все свои спины в одном направлении. В антиферромагнетике атомные моменты выстраиваются в противоположных направлениях.
Моросан сказал, что важно знать эти крайности в магнитном поведении. «Теоретически мы достаточно хорошо понимаем магнетизм с локальным моментом, и у нас есть некоторое представление о странствующем моменте, но большинство настоящих систем действительно живут посередине», — сказала она.«Мы должны понимать крайности, чтобы понять физику того, что происходит между ними».
«Я думаю, что наиболее важным является то, что такое явление очень редко», — сказал Цзякуи Ван, еще один аспирант лаборатории Моросан и соавтор статьи. «Такой антиферромагнитный материал был обнаружен впервые, поэтому он имеет фундаментальное значение. Он углубляет наше понимание магнетизма».
Моросан сказал, что для фундаментальных научных открытий часто требуется время, чтобы создать приложения.«Я надеюсь, что в конечном итоге мы сможем найти достаточно этих систем, чтобы лучше понять их. Тогда мы будем знать, с чем имеем дело, чтобы мы могли создавать соединения с точными свойствами, которые нам нужны».
Уникальное статическое магнитное и динамическое электромагнитное поведение в композитах из нитрида титана / углерода, вызванное дефектной инженерией
Александр С., Лусио, А. Д., Кастро Нето, А. Х. и Нунес, Р. В. Коррелированные магнитные состояния в протяженных одномерных дефектах графена. Nano Lett.12. С. 5097–5102 (2012).
ADS CAS Статья Google Scholar
Лю Ф., Сонг, С. Ю., Сюэ, Д. Ф. и Чжан, Х. Дж. Сложенная структурированная графеновая бумага для материалов электродов с высокими эксплуатационными характеристиками. Adv. Матер. 24. С. 1089–1094 (2012).
CAS Статья Google Scholar
Гуо, Й.К., Сюй, К., Ву, Ч.З., Чжао, Дж. Й. и Се, Ю. Химическая модификация поверхности для конструирования внутренних физических свойств неорганических двумерных наноматериалов.Chem. Soc. Ред. 44, 637–646 (2015).
CAS Статья Google Scholar
Лю, Дж., Цяо, С. З., Ху, К. Х. и Лу, Г. К. Магнитные нанокомпозиты с мезопористой структурой: синтез и приложения. Small 7, 425–443 (2011).
CAS Статья Google Scholar
Кокейн, Э., Раттер, Г. М., Гизингер, Н. П., Крейн, Дж. Н., Ферст, П. Н. и Стросио, Дж.А. Граничные петли зерен в графене. Phys. Ред. Б. 83, 195425 (2011).
ADS Статья Google Scholar
Дев, П., Сюэ, Ю. и Чжан, П. Х. Дефектный собственный магнетизм в широкозонных нитридах III. Phys. Rev. Lett. 100, 117204 (2008).
ADS Статья Google Scholar
Венкатесан М., Фицджеральд К. Б. и Коуи Дж. М. Д. Тонкие пленки: неожиданный магнетизм в диэлектрическом оксиде.Природа. 430, 630–630 (2004).
ADS CAS Статья Google Scholar
Pan, H. et al. Ферромагнетизм при комнатной температуре в ZnO, легированном углеродом. Phys. Rev. Lett. 99, 127201 (2007).
ADS CAS Статья Google Scholar
Фитцджеральд, К. Б. и др. Магнетизм в разбавленных тонких пленках магнитного оксида на основе SnO2. Phys. Ред. B 74, 115307 (2006).
ADS Статья Google Scholar
Дас-Пеммараджу, К. и Санвито, С. Ферромагнетизм, вызванный внутренними точечными дефектами в HfO2. Phys. Rev. Lett. 94, 217205 (2005).
ADS Статья Google Scholar
Хонг, Н. Х., Сакаи, Дж., Пуаро, Н. и Бризе, В. Ферромагнетизм при комнатной температуре, наблюдаемый в нелегированных полупроводниковых и диэлектрических тонких пленках оксидов.Phys. Ред. B 73, 132404 (2006).
ADS Статья Google Scholar
Tietze, T. et al. Межфазный доминирующий ферромагнетизм в нанозернистом ZnO: исследование методом μSR и DFT. Sci. Отчет 5. С. 8871 (2015).
CAS Статья Google Scholar
Юн, С. Д. и др. Магнетизм, индуцированный кислородными дефектами, до 880 К в полупроводниковых пленках анатаза TiO2-δ. J. Phys .: Condens.Иметь значение. 18, 355–361 (2006).
Google Scholar
Лю, К. Л., Чжан, Д. и Фан, Т. X. Свойства пористого углерода / нанокомпозитов кобальта по поглощению электромагнитных волн. Прил. Phys. Lett. 93, 013110 (2008).
ADS Статья Google Scholar
Zhang, X. F. et al. Свойства поглощения микроволн нанокапсул никеля с углеродным покрытием. Прил. Phys. Lett.89, 053115 (2006).
ADS Статья Google Scholar
Gong, C.H. et al. Синтез нанокомпозитов Ni / SiO2 для перестраиваемого электромагнитного поглощения. Матер. Lett. 121, 81–84 (2014).
CAS Статья Google Scholar
Meng, H. J. et al. Островоподобные никель / углеродные нанокомпозиты как потенциальные поглотители микроволнового излучения. Синтез с использованием твердофазного пути in situ, и исследование электромагнитных свойств.J. Сплавы. Compd. 644. С. 236–241 (2015).
CAS Статья Google Scholar
Dong, J. Y. et al. Частично кристаллизованный TiO2 для микроволнового поглощения. J. Mater. Chem. А. 3, 5285–5288 (2015).
CAS Статья Google Scholar
Ся, Т., Чжан, Ч., Ойлер, Н. А. и Чен, X. Б. Гидрогенизированные нанокристаллы TiO2: новый материал, поглощающий микроволновое излучение.Adv. Матер. 25, 6905–6910 (2013).
CAS Статья Google Scholar
Zhao, T. K. et al. Аморфные углеродные нанотрубки поглощают электромагнитные волны. Sci. Отчет 4. С. 5619 (2014).
CAS Статья Google Scholar
Снук, Дж. Л. Гиромагнитный резонанс в ферритах. Nature 160, 90–90 (1947).
ADS CAS Статья Google Scholar
Бай, Х., Zhai, Y. & Zhang, H. Y. Green Подход к приготовлению композитов на основе графена с высокой способностью поглощения микроволнового излучения. J. Phys. Chem. С. 115, 11673–11677 (2011).
CAS Статья Google Scholar
Chen, Y.H. et al. Нанокристаллы 3D Fe3O4, украшающие углеродные нанотрубки, для настройки электромагнитных свойств и повышения способности поглощения микроволн. J. Mater. Chem. 2015. Т. 3. С. 12621–12625.
CAS Статья Google Scholar
Гонг, К.H. et al. Эволюция ферромагнетизма при комнатной температуре в сверхпроводниках из наноструктурированного нитрида титана — влияние структурных дефектов. J. Mater. Chem. 21. С. 15273–15278 (2011).
CAS Статья Google Scholar
Gong, C.H. et al. Синтез и микроволновые электромагнитные свойства наноразмерного нитрида титана. J. Mater. Chem. 22, 3370–3376 (2012).
CAS Статья Google Scholar
Ян, К.и другие. Ферромагнетизм и микроволновый электромагнетизм нанокристаллов нитрида титана, легированного железом. J. Phys. Chem. С 116, 26006–26012 (2012).
CAS Статья Google Scholar
Subramanian, B., Muraleedharan, CV, Ananthakumar, R. & Jayachandran, M. Сравнительное исследование нитрида титана (TiN), оксинитрида титана (TiON) и нитрида титана-алюминия (TiAlN) в качестве поверхностных покрытий для биоимплантаты. Серфинг. Пальто. Technol.205, 5014–5020 (2011).
CAS Статья Google Scholar
Бернар М., Деневиль А., Томас О., Жерго П., Сандстром П. и Берч Дж. Рамановские спектры сверхрешеток TiN / AlN. Тонкие твердые пленки 380, 252–255 (2000).
ADS CAS Статья Google Scholar
Senthilnathan, J. & Philip, L. Фотокаталитическое разложение линдана в УФ и видимом свете с использованием TiO2, легированного азотом.Chem. Англ. J. 161, 83–92 (2010).
CAS Статья Google Scholar
Чжан, X. Ф., Лю, Ю. Ю. и Цинь, Г. В. Преодолеть предел Снука с помощью суперпарамагнитного взаимодействия в многоядерных наночастицах Fe3O4 / диоксид кремния / оболочка. Прил. Phys. Lett. 106, 033105 (2015).
ADS Статья Google Scholar
ВАЗ, Ф. и др. Влияние содержания азота на структурные, механические и электрические свойства тонких пленок TiN.Серфинг. Пальто. Technol. 191. С. 317–323 (2005).
CAS Статья Google Scholar
Чжан, Ю.К. Чжао, Р., Лей, Ю. Дж., Мэн, Ф. Б., Чжун, Дж. К. и Лю, Х. Б. Новые углеродные нанотрубки / неорганический гибридный материал Fe3O4: Синтез, характеристика и микроволновые электромагнитные свойства. J. Magn. Magn. Матер. 323, 1006–1010 (2011).
ADS CAS Статья Google Scholar
Хуанг, Х.Г., Чжан, Дж., Сяо, С. Р., Сан, Т. Ю. и Чен, Г. С. Уникальные электромагнитные свойства нановолокна из феррита цинка. Матер. Lett. 124, 126–128 (2014).
CAS Статья Google Scholar
Zhang, Y., Chai, C.P., Luo, Y.J., Wang, L. & Li, G.P. Синтез, структура и электромагнитные свойства мезопористых аэрогелей Fe3O4 золь-гель методом. Матер. Sci. Англ. В 188, 13–19 (2014).
CAS Статья Google Scholar
Лю П.Б., Хуанг, Ю. и Сан, X. Превосходные свойства электромагнитного поглощения композитов поли (3,4-этилендиокситиофен) восстановленный оксид графена-Co3O4, полученные гидротермальным методом. САУ . Appl Mater. Интер. 5, 12355–12360 (2013).
CAS Статья Google Scholar
Sundaresan, A.