Железо физические свойства – Железо — Википедия

Содержание

Химическое и физические свойства железа

Образование 23 октября 2014

Железо — всем известный химический элемент. Он относится к средним по химической активности металлам. Свойства и применение железа мы рассмотрим в этой статье.

Распространенность в природе

Существует довольно большое количество минералов, в состав которых входит феррум. Прежде всего, это магнетит. Он на семьдесят два процента состоит из железа. Его химическая формула — Fe3O4. Данный минерал еще называют магнитный железняк. Он обладает светло-серым цветом, иногда с темно-серым, вплоть до черного, с металлическим блеском. Наибольшее его месторождение среди стран СНГ находится на Урале.

Следующий минерал с высоким содержанием железа — гематит — он на семьдесят процентов состоит из данного элемента. Его химическая формула — Fe2O3. Его еще называют красным железняком. Он обладает окраской от красно-коричневой до красно-серой. Наибольшее месторождение на территории стран СНГ находится в Кривом Роге.

Третий по содержанию феррума минерал — лимонит. Здесь железа шестдесят процентов от общей массы. Это кристаллогидрат, то есть в его кристаллическую решетку вплетены молекулы воды, его химическая формула — Fe2O3•H2O. Как понятно из названия, данный минерал имеет желто-коричневатый цвет, изредка бурый. Он является одной из главных составляющих природных охр и используется в качестве пигмента. Его также называют бурый железняк. Самые крупные места залегания — Крым, Урал.

В сидерите, так называемом шпатовом железняке, сорок восемь процентов феррума. Его химическая формула — FeCO

3. Его структура неоднородна и состоит из соединенных вместе кристаллов разного цвета: серых, бледно-зеленых, серо-желтых, коричнево-желтых и др.

Последний часто встречающийся в природе минерал с высоким содержанием феррума — пирит. Он обладает такой химической формулой FeS2. Железа в нем находится сорок шесть процентов от общей массы. Благодаря атомам серы данный минерал имеет золотисто-желтую окраску.

Многие из рассмотренных минералов применяются для получения чистого железа. Кроме того, гематит используют в изготовлении украшений из натуральных камней. Вкрапления пирита могут иметься в украшениях из лазурита. Кроме этого, в природе железо встречается в составе живых организмов — оно является одним из важнейших компонентов клетки. Данный микроэлемент обязательно должен поступать в организм человека в достаточном количестве. Лечебные свойства железа во многом связаны с тем, что данный химический элемент является основой гемоглобина. Поэтому употребление феррума хорошо сказывается на состоянии крови, а следовательно, и всего организма в целом.

Железо: физические и химические свойства

Рассмотрим по порядку два этих больших раздела. Физические свойства железа — это его внешний вид, плотность, температура плавления и т. д. То есть все отличительные черты вещества, которые связаны с физикой. Химические свойства железа — это его способность вступать в реакцию с другими соединениями. Начнем с первых.

Физические свойства железа

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.

Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все.

Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

С точки зрения химии

Данный элемент относится к металлам средней активности. Но химические свойста железа являются типичными и для всех остальных металлов (кроме тех, которые находятся правее водорода в электрохимическом ряду). Оно способно реагировать со многими классами веществ.

Начнем с простых

Феррум вступает во взаимодействие с килородом, азотом, галогенами (йодом, бромом, хлором, фтором), фосфором, карбоном. Первое, что нужно рассмотреть, — реакции с оксигеном. При сжигании феррума образуются его оксиды. В зависимости от условий проведения реакции и пропорций между двумя участниками они могут быть разнообразными. Как пример такого рода взаимодействиям можно привести следующие уравнения реакций: 2Fe + O

2 = 2FeO; 4Fe + 3O2 = 2Fe2O3; 3Fe + 2O2 = Fe3O4. И свойства оксида железа (как физические, так и химические) могут быть разнообразными, в зависимости от его разновидности. Такого рода реакции происходят при высоких температурах.

Следующее — взаимодействие с азотом. Оно также может произойти только при условии нагревания. Если взять шесть молей железа и один моль азота, получим два моля нитрида железа. Уравнение реакции будет выглядеть следующим образом: 6Fe + N

2 = 2Fe3N.

При взаимодействии с фосфором образуется фосфид. Для проведения реакции необходимы такие компоненты: на три моля феррума — один моль фосфора, в результате образуется один моль фосфида. Уравнение можно записать следующим образом: 3Fe + P = Fe3P.

Кроме того, среди реакций с простыми веществами можно также выделить взаимодействие с серой. При этом можно получить сульфид. Принцип, по которому происходит процесс образования данного вещества, подобен описанным выше. А именно происходит реакция присоединения. Для всех химических взаимодействий подобного рода нужны специальные условия, в основном это высокие температуры, реже — катализаторы.

Также распространены в химической промышленности реакции между железом и галогенами. Это хлорирование, бромирование, йодирование, фторирование. Как понятно из названий самих реакций, это процесс присоединения к атомам феррума атомов хлора/брома/йода/фтора с образованием хлорида/бромида/йодида/фторида соответственно. Данные вещества широко используются в разнообразных отраслях промышленности. Кроме того, феррум способен соединяться с кремнием при высоких температурах. Благодаря тому что химические свойства железа разнообразны, его часто используют в химической отрасли промышленности.

Феррум и сложные вещества

От простых веществ перейдем к тем, молекулы которых состоят из двух и более различных химических элементов. Первое, что нужно упомянуть, — реакцию феррума с водой. Здесь проявляются основные свойства железа. При нагревании воды вместе с железом образуется основный оксид (называется он так потому, что при взаимодействии с той же водой образует гидроксид, по-другому говоря — основание). Итак, если взять по одному молю обоих компонентов, образуются такие вещества, как диоксид феррума и водород в виде газа с резким запахом — также в молярных пропорциях один к одному. Уравнение такого рода реакции можно записать следующим образом: Fe + H

2O = FeO + H2. В зависимости от пропорций, в которых смешать эти два компонента, можно получить ди- либо триоксид железа. Оба этих вещества очень распространены в химической промышленности, а также используются во многих других отраслях.

С кислотами и солями

Так как феррум находится левее водорода в электрохимическом ряду активности металлов, он спосособен вытеснять данный элемент из соединений. Примером этому является реакция замещения, которую можно наблюдать при добавлении железа к кислоте. Например, если смешать в одинаковых молярных пропорциях железо и сульфатную кислоту (она же серная) средней концентрации, в результате получим сульфат железа (ІІ) и водород в одинаковых молярных пропорциях. Уравнение такой реакции будет выглядеть таким образом: Fe + H

2SO4 = FeSO4 + H2.

При взаимодействии с солями проявляются восстановительные свойства железа. То есть с помощью него можно выделить менее активный металл из соли. Например, если взять один моль сульфата меди и столько же феррума, то можно получить сульфат железа (ІІ) и чистую медь в одинаковых молярных пропорциях.

Значение для организма

Один из самых распространенных в земной коре химических элементов — железо. Свойства вещества мы уже рассмотрели, теперь подойдем к нему с биологической точки зрения. Феррум выполняет очень важные функции как на клеточном уровне, так и на уровне всего организма. В первую очередь железо является основой такого белка, как гемоглобин. Он необходим для транспорта кислорода по крови от легких ко всем тканям, органам, к каждой клетке организма, в первую очередь к нейронам головного мозга. Поэтому полезные свойства железа невозможно переоценить.

Кроме того что он влияет на кровеобразование, феррум также важен для полноценного функционирования щитовидной железы (для этого нужен не только йод, как некоторые считают). Также железо принимает участие во внутриклеточном обмене веществ, регулирует иммунитет. Еще феррум в особенно большом количестве содержится в клетках печени, так как помогает нейтрализовать вредные вещества. Также он является одним из главных компонентов многих видов ферментов нашего организма. В суточном рационе человека должно содержаться от десяти до двадцати миллиграмм данного микроэлемента.

Продукты, богатые железом

Таких немало. Они есть как растительного, так и животного происхождения. Первые — это злаки, бобовые, крупы (в особенности гречка), яблоки, грибы (белые), сухофрукты, шиповник, груши, персики, авокадо, тыква, миндаль, финики, помидоры, брокколи, капуста, черника, ежевика, сельдерей и др. Вторые — печень, мясо. Употребление продуктов с высоким содержанием железа особенно важно в период беременности, так как организм формирующегося плода требует большого количества данного микроэлемента для полноценного роста и развития.

Признаки недостатка в организме железа

Симптомами слишком маленького количества феррума, поступающего в организм, являются усталость, постоянное замерзание рук и ног, депрессии, ломкость волос и ногтей, снижение интеллектуальной активности, пищеварительные расстройства, низкая работоспособность, нарушения в работе щитовидной железы. Если вы заметили несколько из этих симптомов, то стоит увеличить количество продуктов с содержанием железа в своем рационе либо купить витамины или пищевые добавки с содержанием феррума. Также обязательно нужно обратиться к врачу, если какие-либо из этих симптомов вы ощущаете слишком остро.

Использование феррума в промышленности

Применение и свойства железа тесно связаны. В связи с его ферромагнитностью, его применяют для изготовления магнитов — как более слабых для бытовых целей (сувенирные магниты на холодильник и т. д.), так и более сильных — для промышленных целей. В связи с тем что рассматриваемый металл обладает высокой прочностью и твердостью, его с древности использовали для изготовления оружия, доспехов и других военных и бытовых инструментов. К слову, еще в Древнем Египте было известно метеоритное железо, свойства которого превосходят таковые у обычного металла. Также такое особенное железо использовалось и в Древнем Риме. Из него изготавливали элитное оружие. Щит или меч, выполненный из метеоритного металла, мог иметь только очень богатый и знатный человек.

Вообще, металл, который мы рассматриваем в данной статье, является самым разносторонне используемым среди всех веществ данной группы. Прежде всего, из него изготавливаются сталь и чугун, которые применяются для производства всевозможных изделий, необходимых как в промышленности, так и в повседневной жизни.

Чугуном называется сплав железа и углерода, в котором второго присутствует от 1,7 до 4,5 процента. Если второго меньше, чем 1,7 процента, то такого рода сплав называется сталью. Если углерода в составе присутствует около 0,02 процента, то это уже обыкновенное техническое железо. Присутствие в сплаве углерода необходимо для придания ему большей прочности, термоустойчивости, стойкости к ржавлению.

Кроме того, в стали может содержаться много других химических элементов в качестве примесей. Это и марганец, и фосфор, и кремний. Также в такого рода сплав для придания ему определенных качеств могут быть добавлены хром, никель, молибден, вольфрам и многие другие химические элементы. Виды стали, в которых присутствует большое количество кремния (около четырех процентов), используются в качестве трансформаторных. Те, в составе которых много марганца (вплоть до двенадцати-четырнадцати процентов), находят свое применение при изготовлении деталей железных дорог, мельниц, дробилок и других инструментов, части которых подвержены быстрому стиранию.

Молибден вводят в состав сплава, чтобы сделать его более термоустойчивым — такие стали используются в качестве инструментальных. Кроме того, для получения всем известных и часто используемых в быту в виде ножей и других бытовых инструментов нержавеющих сталей необходимо добавление в сплав хрома, никеля и титана. А для того чтобы получить ударостойкую, высокопрочную, пластичную сталь, достаточно добавить к ней ванадий. При вводе в состав ниобия можно добиться высокой устойчивости к коррозии и воздействию химически агрессивных веществ.

Минерал магнетит, который был упомянут в начале статьи, нужен для изготовления жестких дисков, карт памяти и других устройств подобного типа. Благодаря магнитным свойствам, железо можно найти в устройстве трансформаторов, двигателей, электронных изделий и др. Кроме того, феррум могут добавлять в сплавы прочих металлов для придания им большей прочности и механической устойчивости. Сульфат данного элемента применяют в садоводстве для борьбы с вредителями (наряду с сульфатом меди). Хлориды железа являются незаменимыми при очистке воды. Кроме того, порошок магнетита используется в черно-белых принтерах. Главный способ применения пирита — получение из него серной кислоты. Данный процесс происходит в лабораторных условиях в три этапа. На первой стадии пирит феррума сжигают, получая при этом оксид железа и диоксид серы. На втором этапе происходит превращение диоксида сульфура в его триоксид при участии кислорода. И на завершающей стадии полученное вещество пропускают через водяной пар в присутствии катализаторов, тем самым и получая серную кислоту.

Получение железа

В основном добывают данный металл из двух основных его минералов: магнетита и гематита. Делают это с помощью восстановления железа из его соединений углеродом в виде кокса. Делается это в доменных печах, температура в которых достигает двух тысяч градусов по шкале Цельсия. Кроме того, есть способ восстановления феррума водородом. Для этого необязательно наличие доменной печи. Для осуществления данного метода берут специальную глину, смешивают ее с измельченной рудой и обрабатывают водородом в шахтной печи.

Заключение

Свойства и применение железа разнообразны. Это, пожалуй, самый важный в нашей жизни металл. Став известным человечеству, он занял место бронзы, которая на тот момент была основным материалом для изготовления всех орудий труда, а также оружия. Сталь и чугун во многом превосходят сплав меди с оловом с точки зрения своих физических свойств, устойчивости к механическим воздействиям.

Кроме того, железо на нашей планете более распространено, чем многие другие металлы. Массовая доля его в земной коре составляет почти пять процентов. Это четвертый по распространенности в природе химический элемент. Также данный химический элемент очень важен для нормального функционирования организма животных и растений, прежде всего потому, что на его основе построен гемоглобин. Железо является важнейшим микроэлементом, употребление которого важно для поддержания здоровья и нормальной работы органов. Кроме вышеперечисленного, это единственный металл, который обладает уникальными магнитными свойствами. Без феррума невозможно представить нашу жизнь.


Источник: fb.ru

monateka.com

«Металлы. Железо. Строение атома, физические и химические свойства»

Цель: на основании положения в периодической системе химических элементов, строения атома железа учащиеся должны составить представление о физических и химических свойствах железа.

Реактивы. На демонстрационном столе опилки железа, серная кислота (разбавленная), раствор сульфата меди (2), речной песок, вода дистиллированная. Штатив с пробирками, пипетки, пробка с газоотводной трубкой, стакан, лабораторный штатив, спиртовка.

На ученических столах — серная кислота (разбавленная), сульфат меди (2), опилки железные, штатив с пробирками, пипетки.

Оборудование: карта «Минеральные ресурсы» и таблица «План урока». Коллекция «Полезные ископаемые»; 3 конверта с заданиями. 

Ход урока

1. Изучение нового материала.

УЧИТЕЛЬ. Ребята! Послушайте отрывок из «Поэмы о периодическом законе», В. Половняк.

Громоподобные раскаты
И в небе раскаленный след:
На землю новый камень падал
И ужасался человек
Но редким был подарок неба
Им лишь счастливец обладал:
Топор был выкован железный,
Сверкает лезвием кинжал.
Вот длинный ряд тысячелетний
Приходит в поисках, в борьбе,
И наступает век железный
Кровавый беспокойный век.

Проблемный вопрос: на каком древнем языке железо именуют «небесным камнем»?
(ученики выдвигают версии на поставленный вопрос).

Сообщение ученика. 30 июня 1908 году эвенка Чучанги рассказывал: тут я увидел страшное диво — лесины падают, хвоя горит. Жарко очень. Жарко сгореть можно. Вдруг над горой, где уже упал лес, стало сильно светло, будто второе солнце появилось. Эту местность эвенки стали называть «страной мертвого леса», площадь радиусом 25-30 км после падения метеорита.

При падении Тунгусского метеорита по всей Центральной Сибири был виден ослепительно-яркий свет. Установлено, что в земную атмосферу со скоростью 70 км/с влетело метеоритное тело массой 1000000 т. Удары огромной силы, подобные взрывам, были слышны, в тысяче километров от места падения! Куски «небесного тела», которые называют «метеоритами», бывают похожи на камни черно-бурого цвета. В свободном состоянии железо встречается только в метеоритах. Ежесуточно на Землю выпадают до 10 т метеоритного вещества.[3]

УЧИТЕЛЬ. Итак, запишите в свои тетради тему урока: Железо. Строение атома, физические и химические свойства.

Цель урока: на основании положения в периодической системе химических элементов, строение атома железа составить представление о физических и химических свойствах железа.

1. Строение и свойства атомов.

Что можно дополнительно сказать о железе на основании положения его в периодической системе химических элементов? (Ученики сообщают — 8 группа, побочная подгруппа, 4 большой период, d-элемент. Химическое знак – Fe. Порядковый номер – 26. Относительная атомная масса (Ar) – 56).

УЧИТЕЛЬ. А теперь я прошу вас написать строение атома, электронную и графическую формулы железа?( к доске приглашаются ученики).

Ученики составляют следующую запись:

Схема строения атома: Fe +26 )2 )8 )14 )2.

Электронная формула атома 1s2 2s2 p6 3s2 p6 4s2 3d6.

Графическая схема:

В соединениях железо проявляет степень окисления, в основном +2 и +3, реже +4 и +6. Как и всегда при изучении соединений, мы рассмотрим физические свойства железа: 

2. Физические свойства железа.

Вашим помощником на этом уроке будет таблица «План урока», которая висит на доске ( см. приложение). Прошу вас использовать ее в работе на сегодняшнем уроке. (Учитель демонстрирует опилки железа). Начнем с физических свойств железа. Блестящий серебристо-белый металлический. Один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд – гематита, или красного железняка Fe2O3, магнетита Fe3O4, пирита FeS2 и др.

Комментируя руды, учитель демонстрирует коллекцию «Полезные ископаемые» и просит учеников на карте «Минеральные ресурсы», найти основные месторождения и назвать их?

УЧИТЕЛЬ. Сравним атомный радиус железа 0,126 нм с атомным радиусом натрия 0,186 нм, магния 0,16 нм, алюминии 0,14 нм. Какое влияние на свойства железа оказывает такие размеры атома и возможность отдавать электроны c внешнего и предпоследнего слоя?

Железо, имеющее атомы небольших размеров и большое число электронов, участвующих в металлической связи, должно обладать высокой температурой плавления и значительной твердостью, но вместе с тем сравнительно небольшой электропроводностью. Железо тугоплавкое – tпл = 1539°С, относительно мягкое (по школе твердость его равна 4), способен сильно притягиваться магнитами.

У железа есть две аллотропные модификации: альфа-железа устойчивое до 910°С, имеет кубическую объемно-центрированную решетку; гамма-железо t=910 – 1400°С – кубическую гранецентрированную.

Железо может отдавать электроны, находящиеся на двух ( внешнем и предпоследнем) слоях. Проявляет восстановительные свойства. Степень железа зависит от окислительной способности реагирующих с ним веществ. Итак, химические свойства железа:

3. Химические свойства железа.

Познакомимся с химическими свойствами железа: искры, вырывающиеся при резке стального инструмента, представляет с собой раскаленные частички окалины. В кислороде железо сгорает, разбрасывая искры – частички железной окалины Fe3O4.

Свойства №1 Взаимодействия железа с кислородом: 


промежуточный оксид

Свойства №2 Взаимодействие железа с водой:

Учитель пишет на доске уравнение реакции и просит уравнять его с помощью электронного баланса. Это задание выполняет ученик у доски, а остальные – на своих рабочих местах:

 

Затем учитель проводит демонстрацию опыта «Взаимодействия железа с водой» (см. приложение).

Свойство №3 Взаимодействие железа с разбавленными кислотами: 

УЧИТЕЛЬ. Используя предложенные вам реактивы, проведите химическую реакцию, о которой идет речь. Напишите уравнение реакции в молекулярном и ионном виде. Докажите, что железо в данном процессе проявляет свойство восстановителя.

Учитель приглашает к доске ученика, который проводит эксперимент и записывает уравнение реакции, а остальные выполняют предложенное задание на своих рабочих местах:

В электрохимическом ряду напряжений металлов железо расположено до водорода. Поэтому оно растворяется в разбавленных серной и соляной кислотах, вытесняя из них водород и образуя соответствующую соль, степень окисления +2.

Свойства №4 Взаимодействие с растворами солей: 

УЧИТЕЛЬ. Используя предложенные вам реактивы, проведите химическую реакцию, о которой идет речь. Напишите уравнение реакции в молекулярном и ионном виде – это задание делают ученики первого варианта, а ученики второго варианта – докажите, что железо в данном процессе проявляет свойство восстановителя.

Учитель приглашает к доске ученика, который проводит эксперимент. А остальные выполняют предложенное задание на своих рабочих местах:

2. Подведем итоги урока по таблице «План урока»

3. Закрепление материала.

УЧИТЕЛЬ. Ребята! К нам на урок химии прислали три конверта, в них помещены задания для тех, кто хочет получить отметку «5» и «4». Приглашаю к доске желающих. Ученикам, работающим на своих местах, можно выполнить задание по своему усмотрению.

№1 конверт (за правильно выполненное задание – «5»).

Какой объем оксида углевода (2) потребуется для восстановления железа из 2,32 кг магнитного железа (), содержащего 5% пустой породы? Какое количество вещества железа при этом получится, если выход его составляет 80% от теоретически возможного?

№2 конверт (за правильное выполненное задания – «4»).

Напишите два уравнения реакции железа с концентрированной серной кислотой, в которой продуктом восстановления кислоты будет соответственно оксид серы(4), сера S. При уравнивании записей реакции используйте метод электронного баланса. Определите окислитель и восстановитель в этих реакциях.

УЧИТЕЛЬ. Ребята! У нас еще остался конверт (учитель показывает конверт). Что же здесь находится? (Учитель вскрываетконверт и читает). Домашнее задание (записывает на доске домашнее задание).

Учить §14 до статьи «Соединение железа», по рабочей тетради тема «Железо» №3-4 письменно.

Завершая знакомство со свойствами железа, хочу напомнить, насколько химия многолика. Она дает ученику огромные возможности, но при этом требует ответственного отношения и понимания химических реакций. Надеюсь, что полученные сведения окажутся вам полезными.

Комментирую отметки учащихся.

ЛИТЕРАТУРА:

  1. Бусев А.И., Ефимов И.П., Определения, понятия, термины в химии. Просвещение 1981.
  2. Габриелян О.С. Химия 9 класс Дрофа,2001.
  3. Гонтарук Т.И. автор- составитель. Я познаю мир. Детская энциклопедия. АСП 1999, с. 294-297.
  4. Полосин В.С. Школьный эксперимент по неорганической химии. Просвещение 1970.
  5. ТретьяковЮ.Д. Справочные материалы. Просвещение 1988.

Приложение

urok.1sept.ru

Железо — Мегаэнциклопедия Кирилла и Мефодия — статья

В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят также кобальт и никель. Эти три элемента образуют триаду и обладают сходными свойствами.

Радиус нейтрального атома железа 0, 126 нм, радиус иона Fe2+ — 0, 080 нм, иона Fe3+ — 0, 067 нм. Энергии последовательной ионизации атома железа 7, 893, 16, 18, 30, 65, 57, 79 эВ. Сродство к электрону 0, 58 эв. По шкале Полинга электроотрицательность железа около 1, 8.

Железо высокой чистоты — это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механической обработки.

В земной коре железо распространено достаточно широко — на его долю приходится около 4, 1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe2O3; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe3О4; содержит 72, 4% Fe), бурые железняки (руда гидрогетит НFeO2·nH2O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО3; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS2 (другие названия — серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10-5—1·10-8% железа.Железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тыс. до н. э. Период с 9 по 7 в. до н. э., когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутья (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи — домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства — домны, кислородные конвертеры, электродуговые печи.При температурах от комнатной и до 917 °C, а также в интервале температур 1394-1535 °C существует α-Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0, 286645 нм. При температурах 917-1394 °C устойчиво β-Fe с кубической гранецентрированной решеткой Т (а = 0, 36468 нм). При температурах от комнатной до 769 °C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное α-Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917 °C, рассматривают как γ-модификацию железа, а β-Fe, устойчивое при высоких температурах (1394-1535 °C), называют по традиции δ-Fe (представления о существовании четырех модификаций железа — α, β, γи δ— возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535 °C, температура кипения 2750 °C, плотность 7, 87 г/см3. Стандартный потенциал пары Fe2+/Fe0 –0, 447В, пары Fe3+/Fe2+ +0, 771В.

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe2О3·хН2О.

С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe2О3, при сгорании в чистом кислороде — оксид Fe3О4. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы и железа образуется сульфид, приближенную формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl3. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeСl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода образуется иодид Fe3I8.

При нагревании железо реагирует с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава [Fe(-C5H5)2].

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):

Fe + 2HCl = FeCl2 + H2

Fe + H2SO4 = FeSO4 + H2

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):

2Fe + 4H2SO4 = Fe2(SO4)3 + SO2 + 4H2O

Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН)2. Оксид железа (III) Fe2O3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН)2, основание Fe(ОН)3, которое реагирует с кислотами:

2Fe(ОН)3 + 3H2SO4 = Fe2(SO4)3 + 6H2O

Гидроксид железа (III) Fe(ОН)3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:

Fe(ОН)3 + КОН = К[Fe(ОН)4]

Образующиеся при этом гидроксокомплексы железа (III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH)3.

Соединения железа (III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl3 = 3FeCl2

При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):

4FeCl2 + O2 + 2H2O = 4Fe(OH)Cl2Из солей железа (II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа (II) (NH4)2Fe(SO4)2·6Н2О.

Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

При действии газообразного хлора или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) — ферраты, например, феррат (VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).

Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами CNS. При взаимодействии ионов Fe3+ с анионами CNS образуется ярко-красный роданид железа Fe(CNS)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат (II) калия K4[Fe(CN)6] (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe3+ и [Fe(CN)6]4- выпадает ярко-синий осадок.

Реактивом на ионы Fe2+ в растворе может служить раствор гексацианоферрат (III) калия K3[Fe(CN)6], ранее называвшийся красной кровяной солью. При взаимодействии ионов Fe3+ и [Fe(CN)6]3- выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe3+ и [Fe(CN)6]4-.

Железо используется главным образом в сплавах, прежде всего в сплавах с углеродом — различных чугунах и сталях. В чугуне содержание углерода выше 2, 14 % по массе (обычно — на уровне 3, 5-4%), в сталях содержание углерода более низкое (обычно на уровне 0, 8-1 %).

Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию — нагреванию при температуре около 1000 °C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей — шлака. Снизу в домну подают дутье (чистый кислород или воздух, обогащенный кислородом). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300 °C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:

Fe2O3 + 3C = 2Fe + 3CO;

Fe2O3 + 3CО = 2Fe + 3CO2

возникает металлическое железо, которое насыщается углеродом и стекает вниз.

Этот расплав периодически выпускают из домны через специальное отверстие — летку — и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун — это твердый раствор углерода в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.

Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.

Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.

Если содержание углерода в чугуне снизить до 1, 0-1, 5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома, никеля, молибдена, кобальта и других металлов, улучшающие механические и иные свойства стали).

Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода в сплаве до требуемого уровня, как говорят, избыточный углерод выгорает.

Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.

Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.

Чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа — чугун и сталь — составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.

Железо присутствует в организмах всех растений и животных как микроэлемент, то есть в очень малых количествах (в среднем около 0, 02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа — участие в транспорте кислорода и окислительных процессах. Эту функцию железо выполняет в составе сложных белков — гемопротеидов, простетической группой которых является железопорфириновый комплекс — гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4, 2 г железа, в 1 л крови — около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.
  • Конецкая Д. С. и др. Железо высокой степени чистоты. М., 1978.
  • Путешествие в страну элементов: Сборник. М.: Молодая гвардия. 1963.
  • Каменецкая Д. С., Пилецкая И. Б., Ширяев В. И. Железо высокой степени чистоты. М., 1978.
  • Пикеринг Ф. Физическое металловедение и разработка сталей. М., 1982.

megabook.ru

Железо. Информация о металле. Физические и химические свойства, Нахождение в природе

монтаж мембранной кровли.

  Fe              26
Железо  55.847(3)
          3s23p33s64s2

История открытия и применения железа

Железо — Элемент XVIII группы четвертого периода периодической системы Менделеева, металл

Степень окисления +2,+3, иногда +6.

Один из наиболее распростаненных элементов в природе. Особено важен для живых организмов: является основным катализатором дыхательных процессов. Железо входит в состав гемоглобина крови (477 мг/л), учавствует в процессе переноса кислорода от легких к тканям. Железо встречается в природе в основном в виде руд.

Основные руды железа:
— магнетит (магнитный железняк) FезО4 (содержит до 72% железа), основные месторождения находятся на Урале.
— гематит (красный железняк) Fe2О3 (содержит до 65% железа), основное месторождение — Криворожское.
— лимонит (бурый железняк) Fe2О3 • nH2O (содержит до 60% Ре), крупные месторождения в Крыму и на Урале.
— пирит (железный колчедан) FeS2 (содержит около 46% железа), — сидерит (шпатовый железняк) FeСО3 (содержит до 35% Железа).

Получение:
1. Чистое железо можно получить электролитическим восстановлением солей железа.
FeCl2 = Fe2+ + 2Cl
2. Восстановление оксидов железа Fe2O3 и Fe3O4 при алюминотермии:
8Al + 3Fe3O4 = 9Fe + 4Al2O3
3. Основная масса железа используется не в чистом виде, а виде сплавов с углеродом (чугуна и стали) и другими элементами. Основная масса железа вырабатывается в доменных печах. Процесс, протекающий в доменной печи при получении сплавов железа, основан на восстановлении оксидов железа при нагревании:
3Fe2O3 + CO = 2Fe3O4 + CO2
Fe3O4 + CO = 3FeO + CO2
FeO + CO = Fe + CO2
FeO + C = Fe + CO

Физические свойства:
Чистое железо — серебристо-белый металл, быстро тускнеющий (ржавеющий) на влажном воздухе или в воде, содержащей кислород. Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С. Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью.
Химические свойства:
Железо — активный металл.
1. На воздухе образуется защитная оксидная пленка, препятствующая ржавению металла. 3Fe + 2O2 = Fe2O3 • FeO (Феррит железа)
2. Во влажном воздухе железо окисляется и покрывается ржавчиной, которая частично состоит из гидратированного оксида железа (III). 4Fe + 3О2 + 6Н2О = 4Fe(ОН)3 3. Взаимодействует с хлором, углеродом и другими неметаллами при нагревании: 2Fe + 3Cl2 = 2FeCl3
4.Железо вытесняет из растворов солей металлы, находящиеся в электрохимическом ряду напряжений правее железа:
Fe + CuSO4 = FeSO4 + Cu
5. Растворяется в разбавленных серной и соляной кислотах c выделением водорода:
Fe + 2Cl = FeCl2 + H2


all-met.narod.ru

Железо свойства физические — Справочник химика 21

    Физические свойства железа [c.300]

    Физические свойства карбонилов и гидрокарбонилов никеля, железа и кобальта [c.528]

    Даны одинаковые по форме и величине кусочки лития и железа. Как отличить друг от друга литий и железо, используя лишь их различия в физических свойствах  [c.115]

    Сплавы железа. Едва ли не самыми распространенными материалами в технике были и остаются чугун и различные стали. Те и другие являются соединениями железа и углерода (исключая специальные стали). Различное содержание углерода заметно влияет на физические свойства указанных сплавов. Мягкая сталь содержит не выше 0,3% углерода. Ее отличительная особенность — высокая пластичность. Например, из мягкой стали изготовляют гвозди. Твердая сталь содержит от [c.134]


    Вещества и их изменения. Предмет химии. Каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами, например, вода, железо, сера, известь, кислород, в химии называют веществом. Так, сера — это хрупкие кристаллы светло-желтого цвета, нерастворимые в воде плотность серы 2,07 г/см , плавится она при 112,8 С. Все это — характерные физические свойства серы. [c.13]

    Углерод присутствует в сплавах железа в трех формах связанный в твердом растворе (феррите), в карбидах и в виде графита Определение содержания различных видов углерода в сталях и чугунах основано на их различных физических и химических свойствах и их реакциях в растворах электролитов. [c.29]

    Металлы этой группы железо, кобальт и никель имеют много общего не только по физическим и химическим свойствам, но и по электрохимическому поведению. Они обладают повышенной реакционной способностью и легко пассивируются во многих средах, вследствие чего стационарные потенциалы их существенно отличаются от равновесных, рассчитанных на основании термодинамических данных. Осаждение на катоде и растворение на аноде этих металлов происходит с значительным торможением, особенно при комнатной температуре (рис. ХИ-13 и ХИ-14). Электролитические осадки металлов группы железа всегда отличаются очень мелкозернистой структурой, легко полируются и в зависимости от условий электролиза могут быть и мягкими и очень твердыми. [c.404]

    Применение высокотемпературной рентгенографии для изучения полиморфизма железа. Вся современная практика изготовления и термической обработки сталей базируется на уникальном физическом свойстве железа — его аллотропии или полиморфизме, открытом в 1868 г. Д. К. Черновым. [c.162]

    В зависимости от условий получения, оттенок красной окиси железа может колебаться от оранжево-красного до синеватого и даже фиолетово-красного. Колебание оттенков окиси железа обусловлено физическим состоянием ее частиц — их дисперсностью, формой и некоторыми другими свойствами. Микроскопическое исследование показало, что окись железа оранжевого оттенка состоит из частиц, имеющих форму пластинок размером [c.354]

    В смесях двух или более различных веществ каждое из веществ сохраняет свою индивидуальность. Пропорции, в которых смешивают вещества, не влияют существенно на свойства каждой составной части. Можно перемешать железный порошок с серой в соотношении 2 1 или 1 2 — свойства серы и железа не изменятся. Железо можно выделить из смеси действием магнита, а серу — растворением в сероуглероде, т. е. простыми физическими методами. Если же железо нагревать с серой, то между ними происходит химическое взаимодействие 55,8 г железа реагирует с 32 г серы с образованием сульфида железа. Свойства этого соединения отличаются от свойств железа и серы оно не притягивается магнитом и не растворяется в сероуглероде. Образование сульфида железа сопровождается выделением тепла и света. [c.18]


    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]

    Исследования продуктов взаимодействия органических соединений серы с порошком железа в интервале температур 50—170°С позволили скоррелировать противозадирный эффект этих соединений с их способностью образовывать в ходе реакции вещества, обеспечивающие сульфидирование стальной поверхности [134]. Эти исследования не совпали с гипотезой о механизме противоизносного действия, высказанной Форбсом. Так, было установлено, что противоизносная эффективность соединений определяется физическими свойствами пленок, образованных этими соединениями при адсорбции на металлической поверхности и скоростью образования этих пленок, а не легкостью, разрыва связей 8—8, как это утверждалось ранее и было высказано Форбсом. [c.133]

    В процессе эксплуатации в аппаратах, трубопроводах, емкостях накапливаются различные отходы осадки, грязь, механические прнмеси, соли, кокс и др. Их количество и

www.chem21.info

17dэлементы Железо

17.d-элементы.Железо, общая характеристика, свойства. Оксиды и гидроксиды, КО и ОВ характеристика, биороль, способность к комплексообразованию.

1.Общая характеристика.

26

Железо

Fe

55,847

3d64s2

Железо — d-элемент побочной подгруппы восьмой группы четвёртого периода ПСХЭ с атомным номером 26.

Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе.

4Fe + 3O2 + 6h3O = 4Fe(OH)3

В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

3Fe + 2O2 = FeO + Fe2O3

3Fe + 4h3O = FeO*Fe2O3

FeO*Fe2O3 = Fe3O4 (железная окалина)

Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром,марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

2.Свойства

1.Физ.св-ва.Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности — углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» — группу трёх металлов (железо Fe,кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

2.Хим.св-ва.

Степень окисления

Оксид

Гидроксид

Характер

Примечания

+2

FeO

Fe(OH)2

Слабоосновный

+3

Fe2O3

Fe(OH)3

Очень слабое основание, иногда — амфотерный

+6

Не получен

<H2FeO4>*

Кислотный

Сильный окислитель

Для железа характерны степени окисления железа — +2 и +3.

  • Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH)2. Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) — слабый восстановитель.

  • Степени окисления +3 соответствуют красно-коричневый оксид Fe2O3 и коричневый гидроксид Fe(OH)3. Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe3+ нацело гидролизуются даже в кислой среде. Fe(OH)3 растворяется (и то не полностью), только в концентрированных щелочах. Fe2O3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

  • Кроме того, существует оксид Fe3O4, формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe+2(Fe+3O2)2.

  • Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли — ферраты (например, K2FeO4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

  1. С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

  1. При взаимодействии железа с приблизительно 70%-й серной кислотой при нагревании реакция протекает с образованием сульфата железа(III):

3.Оксиды и гидроксиды, КО и ОВ хар-ка…

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадоктурнбулевой сини:

Для количественного определения железа (II) в растворе используют фенантролин , образующий с железом (II) красный комплекс FePhen3 в широком диапазоне рН (4-9)

Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

Соли Fe3+ склонны к образованию кристаллогидратов. В них ион Fe3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.Ион Fe3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается[18] в виде Fe(OH)3:

При частичном гидролизе иона Fe3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.Основные свойства гидроксида железа(III) Fe(OH)3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:

Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

При сплавлении со щелочами и оксидами других металлов Fe2O3 образует разнообразные ферриты:

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN. При взаимодействии ионов Fe3+ с анионами SCN образуется смесь ярко-красных роданидных комплексов железа [Fe(SCN)]2+, [Fe(SCN)2]+, Fe(SCN)3, [Fe(SCN)4]. Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4− выпадает ярко-синий осадок берлинской лазури:

Ферраты — соли не существующей в свободном виде железной кислоты H2FeO4. Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости — сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH)3 в щелочи[20], например, феррат(VI) калия K2FeO4. Ферраты окрашены в фиолетовый цвет.

Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:

Ферраты — сильные окислители. В кислой среде разлагаются с выделением кислорода:

Окислительные свойства ферратов используют для обеззараживания воды.

4.Биороль

1)В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания).

2)Обычно железо входит в ферменты в виде комплекса.В частности, этот комплекс присутствует в гемоглобине — важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

3)Содержание железа в воде больше 1—2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз)..

4)Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

studfile.net

Железо. Информация о металле. Физические и химические свойства, Нахождение в природе

  Fe              26
Железо  55.847(3)
          3s23p33s64s2

История открытия и применения железа

Железо — Элемент XVIII группы четвертого периода периодической системы Менделеева, металл

Степень окисления +2,+3, иногда +6.

Один из наиболее распростаненных элементов в природе. Особено важен для живых организмов: является основным катализатором дыхательных процессов. Железо входит в состав гемоглобина крови (477 мг/л), учавствует в процессе переноса кислорода от легких к тканям. Железо встречается в природе в основном в виде руд.

Основные руды железа:
— магнетит (магнитный железняк) FезО4 (содержит до 72% железа), основные месторождения находятся на Урале.
— гематит (красный железняк) Fe2О3 (содержит до 65% железа), основное месторождение — Криворожское.
— лимонит (бурый железняк) Fe2О3 • nH2O (содержит до 60% Ре), крупные месторождения в Крыму и на Урале.
— пирит (железный колчедан) FeS2 (содержит около 46% железа), — сидерит (шпатовый железняк) FeСО3 (содержит до 35% Железа).

Получение:
1. Чистое железо можно получить электролитическим восстановлением солей железа.
FeCl2 = Fe2+ + 2Cl
2. Восстановление оксидов железа Fe2O3 и Fe3O4 при алюминотермии:
8Al + 3Fe3O4 = 9Fe + 4Al2O3
3. Основная масса железа используется не в чистом виде, а виде сплавов с углеродом (чугуна и стали) и другими элементами. Основная масса железа вырабатывается в доменных печах. Процесс, протекающий в доменной печи при получении сплавов железа, основан на восстановлении оксидов железа при нагревании:
3Fe2O3 + CO = 2Fe3O4 + CO2
Fe3O4 + CO = 3FeO + CO2
FeO + CO = Fe + CO2
FeO + C = Fe + CO

Физические свойства:
Чистое железо — серебристо-белый металл, быстро тускнеющий (ржавеющий) на влажном воздухе или в воде, содержащей кислород. Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С. Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью.
Химические свойства:
Железо — активный металл.
1. На воздухе образуется защитная оксидная пленка, препятствующая ржавению металла. 3Fe + 2O2 = Fe2O3 • FeO (Феррит железа)
2. Во влажном воздухе железо окисляется и покрывается ржавчиной, которая частично состоит из гидратированного оксида железа (III). 4Fe + 3О2 + 6Н2О = 4Fe(ОН)3 3. Взаимодействует с хлором, углеродом и другими неметаллами при нагревании: 2Fe + 3Cl2 = 2FeCl3
4.Железо вытесняет из растворов солей металлы, находящиеся в электрохимическом ряду напряжений правее железа:
Fe + CuSO4 = FeSO4 + Cu
5. Растворяется в разбавленных серной и соляной кислотах c выделением водорода:
Fe + 2Cl = FeCl2 + H2


allmetalls.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *